If MICROPY_ENABLE_SCHEDULER is enabled then MP_STATE_VM(sched_state) must
be updated after handling the pending exception, which is done by the
mp_handle_pending() function.
Signed-off-by: Damien George <damien@micropython.org>
This can now be selected by setting MICROPY_HW_SDIO_SDMMC, which defaults
to 1, ie SDMMC1. The pins can also be selected and default to the standard
C8/C9/C10/C11/C12/D2.
This can now be selected by setting MICROPY_HW_SDCARD_SDMMC, which defaults
to 1, ie SDMMC1. This commit also renames the SD pin configuration macros
from MICROPY_HW_SDMMC2_xxx to MICROPY_HW_SDCARD_xxx, as well as renaming
MICROPY_HW_SDMMC_BUS_WIDTH to MICROPY_HW_SDCARD_BUS_WIDTH.
Signed-off-by: Damien George <damien@micropython.org>
A board can now define MBOOT_TEXT0_ADDR to place mboot at a location other
than 0x08000000. This can be useful if, for example, there is already a
different bootloader on the device.
Signed-off-by: Damien George <damien@micropython.org>
A board can now define MBOOT_LD_FILES (at the Makefile-level) to specify
custom linker scripts. And stm32_generic.ld has been split into 2 pieces
so one or the other can be reused (usually stm32_sections.ld wolud be
reused by a board, and stm32_memory.ld redefined).
Signed-off-by: Damien George <damien@micropython.org>
A board can now use BUILDING_MBOOT at the Makefile-level to do things
conditional on building mboot, for example add source files to SRC_C.
Signed-off-by: Damien George <damien@micropython.org>
Commit 1e297c8898 introduced a bug where the
very first reset-mode state on the LEDs was not shown, because prior to
that commit the first reset-mode state was the same as the initial LED
state (green on, others off) and update_reset_mode() was called after
setting this initial LED state.
This is fixed in this commit by changing the update_reset_mode() loop so
that it displays the current reset mode before doing the delay.
Signed-off-by: Damien George <damien@micropython.org>
And use the same boardctrl.h header for both the application and mboot so
these constants are consistent.
Signed-off-by: Damien George <damien@micropython.org>
This adds support for making static (ie not on the Python GC heap) soft
timers. This can be useful for a board to define a custom background
handler, or eventually for BLE/network processing to use instead of systick
slots; it will be more efficient using soft timer for this.
The main issue with using the existing code for static soft timers is that
it would combine heap allocated and statically allocated soft_timer_entry_t
instances in the same pairing-heap data structure. This would prevent the
GC from tracing some of the heap allocated entries (because the GC won't
follow pointers outside the heap).
This commit makes it so that soft timer entries are explicitly marked,
instead of relying on implicit marking by having the root of the pairing
heap in the root pointer section. Also, on soft reset only the heap-
allocated soft timers are deleted from the pairing heap, leaving the
statically allocated ones.
Signed-off-by: Damien George <damien@micropython.org>
This commit re-enables the command-line make option "FROZEN_MANIFEST". The
boards/*/mpconfigboard.cmake will now use the command-line FROZEN_MANIFEST
value if supplied.
Usage: make FROZEN_MANIFEST=~/foo/my-manifest.py
Because "find_package(Python3 ...)" requires at least this version of
CMake. And other features like GREATER_EQUAL and COMMAND_EXPAND_LISTS need
at least CMake 3.7 and 3.8 respectively.
Signed-off-by: Damien George <damien@micropython.org>
Improvements are:
- Default period is 1000ms with callback disabled.
- if period is not specified then it's not updated (previously, if period
was not specified then it was set to -1 and running the timer callback as
fast as possible, making the REPL unresponsive).
- Use uint64_t to compute delta_ms, and raise a ValueError if the period is
too large.
- If callback is not specified then it's not updated.
- Specifying None for the callback will disable the timer.
Signed-off-by: Damien George <damien@micropython.org>
The PIO state machines on the RP2040 have 4 word deep TX and RX FIFOs. If
you only need one direction, you can "merge" them into either a single 8
word deep TX or RX FIFO.
We simply add constants to the PIO object, and set the appropriate bits in
`shiftctrl`.
Resolves#6854.
Signed-off-by: Tim Radvan <tim@tjvr.org>
Commit 8a917ad252 added the gpio_reset_pin()
call to make sure that pins that were used as ADC inputs could subsequently
be used as digital IO. But calling gpio_reset_pin() will enable the
pull-up on the pin and so pull it high for a brief period. Instead use
rtc_gpio_deinit() which will just reconfigure the pin as a digital IO and
do nothing else.
Fixes issue #7079 (see also #5771).
Signed-off-by: Damien George <damien@micropython.org>
For an unconnected TCP socket, poll should return WR|HUP and read should
raise ENOTCONN. This is implemented by this commit and now the following
tests pass on esp32: extmod/usocket_tcp_basic.py,
net_hosted/connect_poll.py.
Signed-off-by: Damien George <damien@micropython.org>
This change allows running the tests in tests/basics/ without any failures
(but some tests are still skipped).
Signed-off-by: Damien George <damien@micropython.org>
This fixes `error: variable 'subpkg_tried' might be clobbered by 'longjmp'
or 'vfork' [-Werror=clobbered]` when compiling on ppc64le and aarch64 (and
possibly other architectures/toolchains).
This function includes the UART prescaler in the calculation (if it has
one, eg on H7 and WB MCUs).
Signed-off-by: Damien George <damien@micropython.org>
The STM32WB has a problem when address resolution is enabled: under certain
conditions the MCU can get into a state where it draws an additional 10mA
or so and eventually ends up with a broken BLE RX path in the silicon. A
simple way to reproduce this is to enable address resolution (which is the
default for NimBLE) and start the device advertising. If there is enough
BLE activity in the vicinity then the device will at some point enter the
bad state and, if left long enough, will have permanent BLE RX damage.
STMicroelectronics are aware of this issue. The only known workaround at
this stage is to not enable address resolution, which is implemented by
this commit.
Work done in collaboration with Jim Mussared aka @jimmo.
Signed-off-by: Damien George <damien@micropython.org>
Prior to this commit, if C2 was busy (eg lots of BLE activity) then it may
not have had time to respond to the notification on the IPCC_CH_MM channel
by the time additional memory was available to put on that buffer. In such
a case C1 would modify the free buffer list while C2 was potentially
accessing it, and this would eventually lead to lost memory buffers (or a
corrupt linked list). If all buffers become lost then ACL packets
(asynchronous events) can no longer be delivered from C2 to C1.
This commit fixes this issue by waiting for C2 to indicate that it has
finished using the free buffer list.
Work done in collaboration with Jim Mussared aka @jimmo.
Signed-off-by: Damien George <damien@micropython.org>
This change allows to build firmware for different rp2-based boards,
following how it is done in other ports like stm32 and esp32. So far only
the original Pico and Adafruit Feather RP2040 are added. Board names
should match (sans case) those in pico-sdk/src/boards/include/boards/.
Usage: Pico firmware can be build either using make as previously (it is
the default board) or by `make BOARD=PICO`. Feather is built by `make
BOARD=ADAFRUIT_FEATHER_RP2040`. Only the board name and flash drive size
is set, pin definition is taken from the appropriate pico-sdk board
definition. Firmware is saved in the directory build-BOARD_NAME.
Instantiation and init now support the rxbuf and txbuf keywords for setting
the buffer size. The default size is 256 bytes. The minimum and maximum
sizes are 32 and 32766 respectively.
uart.write() still includes checks for timeout, even if it is very unlikely
to happen due to a) lack of flow control support and b) the minimal timeout
values being longer than the time it needs to send a byte.
StateMachine.restart: Restarts the state machine
StateMachine.rx_fifo: Return the number of RX FIFO items, 0 if empty
StateMachine.tx_fifo: Return the number of TX FIFO items, 0 if empty
restart() seems to be the most useful one, as it resets the state machine
to the initial state without the need to re-initialise/re-create. It also
makes PIO code easier, because then stalling as an error state can be
unlocked.
rx_fifo() is also useful, for MP code to check for data and timeout if no
data arrived. Complex logic is easier handled in Python code than in PIO
code.
tx_fifo() can be useful to check states where data is not processed, and is
mostly for symmetry.
The implementation samples rosc.randombits at a frequency lower than the
oscillator frequency. This gives better random values. In addition, for
an 8-bit value 8 samples are taken and fed through a 8-bit CRC,
distributing the sampling over the byte. The resulting sampling rate is
about 120k/sec.
The RNG does not include testing of error conditions, like the ROSC being
in sync with the sampling or completely failing. Making the interim value
static causes it to perform a little bit better in short sync or drop-out
situations.
The output of uos.urandom() performs well with the NIST800-22 test suite.
In my trial it passed all tests of the sts 2.1.2 test suite. I also ran a
test of the random data with the Common Criteria test suite AIS 31, and it
passed all tests too.
STM32L476RG MCU of NUCLEO_L476RG board has 6 UART/USART units in total
(USART1, USART2, USART3, UART4, UART5 and LPUART1), but only UART2,
connected to REPL, was defined and available in Python code.
Defined are all 5 remaining UART/USART units including LPUART1.
Signed-off-by: Alexander Ziubin aziubin@googlemail.com
This commit simplifies the customisation of the main MicroPython execution
loop (4 macros are reduced to 2), and allows a board to have full control
over the execution (or not) of boot.py and main.py.
For boards that use the default start-up code, there is no functional
change in this commit.
Signed-off-by: Damien George <damien@micropython.org>
Per CPython everything which comes after the command, module or file
argument is not an option for the interpreter itself. Hence the processing
of options should stop when encountering those, and the remainder be passed
as sys.argv. Note the latter was already the case for a module or file but
not for a command.
This fixes issues like 'micropython myfile.py -h' showing the help and
exiting instead of passing '-h' as sys.argv[1], likewise for
'-X <something>' being treated as a special option no matter where it
occurs on the command line.
Some forum users noticed that `sm.exec()` took longer the more was present
on the flash filesystem connected to the RP2040. They traced this back to
the `array` import inside `asm_pio()`, which is causing MicroPython to scan
the filesystem.
uarray is a built-in module, so importing it shouldn't require scanning the
filesystem.
We avoid moving the import to the top-level in order to keep the namespace
clean; we don't want to accidentally expose `rp2.array`.
Support for C++ was added in 97960dc7de but
that commit didn't include the C++ exception handling table in the binary
firmware image. This commit fixes that.
Signed-off-by: Damien George <damien@micropython.org>
This is a workaround for errata RP2040-E5, and is needed to make USB more
reliable on certain USB ports.
Signed-off-by: Damien George <damien@micropython.org>
It's a bit of a pitfall with user C modules that including them in the
build does not automatically enable them. This commit changes the docs and
examples for user C modules to encourage writers of user C modules to
enable them unconditionally. This makes things simpler and covers most use
cases.
See discussion in issue #6960, and also #7086.
Signed-off-by: Damien George <damien@micropython.org>
It was noticed that the esp32 port didn't build ulab correctly. The
problem was a multiple defintion of the 'mp_hal_stdout_tx_str' and
'mp_hal_stdout_tx_strn_cooked' functions.
They were defined in stdout_helpers.c but also in the
ports/esp32/mphalport.c.
Fixed by removing stdout_helpers.c from the build.
Signed-off-by: Michael O'Cleirigh <michael.ocleirigh@rivulet.ca>
Support for User C and C++ modules was lost due to upgrading the esp32 to
the latest CMake based IDF from the GNUMakefile build process.
Restore the support for the esp32 port by integrating with the approach
recently added for the rp2 port.
Signed-off-by: Michael O'Cleirigh <michael.ocleirigh@rivulet.ca>
This USB feature is currently not supported. With this flag enabled (and
the feature not implemented) the USB serial will stop working if there is a
delay of more than about 2 seconds between messages, which can occur with
USB autosuspend enabled.
Fixes issue #6866.
The parts that are generic are added to py/ so they can be used by other
ports that use CMake.
py/usermod.cmake:
* Creates a usermod target to hang user C/CXX modules from.
* Gathers sources from user C/CXX modules and libs for QSTR scan.
ports/rp2/CMakeLists.txt:
* Includes py/usermod.cmake.
* Links the resulting usermod library to the MicroPython target.
py/mkrules.cmake:
Add cxxflags to qstr.i.last custom command for CXX modules:
* MICROPY_CPP_FLAGS so CXX modules will find includes.
* -DNO_QSTR to fix fatal error missing "genhdr/qstrdefs.generated.h".
Usage:
The rp2 port can be linked against user C modules by running:
make USER_C_MODULES=/path/to/module/micropython.cmake
CMake will print a list of included modules.
Co-authored-by: Graham Sanderson <graham.sanderson@raspberrypi.org>
Co-authored-by: Michael O'Cleirigh <michael.ocleirigh@rivulet.ca>
Signed-off-by: Phil Howard <phil@pimoroni.com>
This commit simplifies and cleans up the bare-arm port, and adds just
enough system and library code to make it execute on an STM32F405 MCU.
The mpconfigport.h configuration is simplified to just specify those
configuration values that are different from the defaults. And the
addition of -fdata-sections and -ffunction-sections means the final
firmware is smaller than it previously was, by about 4200 bytes.
A README is also added.
Signed-off-by: Damien George <damien@micropython.org>
The GNU Make dir command uses spaces as item separator so it does not
work for e.g building the STM32 port on Cygwin with a default Arm
installation in "c:/program files (x86)/GNU Arm Embedded Toolchain".
Fix by using POSIX dirname on a quoted path instead.
When UART is used for REPL and the MCU frequency is changed, the UART
has to be re-initialised. Besides that the UART may have to be recreated
after a frequency change, but with USB REPL this is not a problem.
Thanks to @HermannSW for spotting and providing the change.
Using the standard machine.freq().
The safe ranges tested were 10 and 12-270MHz, at which USB REPL still
worked. Requested settings can be checked with the script:
pico-sdk/src/rp2_common/hardware_clocks/scripts/vcocalc.py. At frequencies
like 300MHz the script still signaled OK, but USB did not work any more.
sm.get(buf) was waiting for one item more than the length of the supplied
buffer. Even if this item was not stored, sm_get would block trying to get
an item from the RX fifo.
As part of the fix, the edge case for a zero length buffer was moved up to
the section where the function arguments are handled. In case of a zero
length buffer, sm.get() now returns immediately that buffer.
The bitmasks supplied for initialization of out/set/sideset were only 8 bit
instead of 32. This resulted in an error, that not more than 8 consecutive
pins would get initialized.
Fixes issue #6933.
This allows the user to enable wake-up sources using the EWUP bits, on F7
MCUs.
Disabling the wake-up sources while clearing the wake-up flags follows the
reference manual and ST examples.
state.reset_mode is updated by `MICROPY_BOARD_BEFORE_SOFT_RESET_LOOP` but
not passed to `init_flash_fs`, and so factory reset is not executed on
boards that do not have a bootloader. This bug was introduced by
4c3976bbcaFixes#6903.
A corrupt filesystem may lead to a request for a block which is out of
range of the block device limits. Return an error instead of passing the
request down to the lower layer.
Two of the defaults have also changed in this commit:
- MICROPY_HW_RFCORE_BLE_LSE_SOURCE changed from 1 to 0, which configures
the LsSource to be LSE (needed due to errata 2.2.1).
- MICROPY_HW_RFCORE_BLE_VITERBI_MODE changed from 0 to 1, which enables
Viterbi mode, following all the ST examples.
Signed-off-by: Damien George <damien@micropython.org>
These ports already have uzlib enabled so this additional ubinascii.crc32
function only costs about 90 bytes of flash.
Signed-off-by: Damien George <damien@micropython.org>
Add LPUART1 as a standard UART. No low power features are supported, yet.
LPUART1 is enabled as the next available UART after the standard U(S)ARTs:
STM32WB: LPUART1 = UART(2)
STM32L0: LPUART1 = UART(6)
STM32L4: LPUART1 = UART(6)
STM32H7: LPUART1 = UART(9)
On all ports: LPUART1 = machine.UART('LP1')
LPUART1 is enabled by defining MICROPY_HW_LPUART1_TX and
MICROPY_HW_LPUART1_RX in mpconfigboard.h.
Signed-off-by: Chris Mason <c.mason@inchipdesign.com.au>
This commit fixes two issues on the esp32:
- it enables machine.soft_reset() to be called in main.py;
- it enables machine.reset_cause() to correctly identify a soft reset.
The former is useful in that it enables soft resets in applications that
are started at boot time. The support is patterned after the stm32 port.
This commit implements basic NVS support for the esp32. It follows the
pattern of the esp32.Partition class and exposes an NVS object per NVS
namespace. The initial support provided is only for signed 32-bit integers
and binary blobs. It's easy (albeit a bit tedious) to add support for
more types.
See discussions in: #4436, #4707, #6780
This enables -Os for compilation, but still keeps full assertion messages.
With IDF v4.2, -Os changes the GENERIC firmware size from 1512176 down to
1384640, and the GENERIC_SPIRAM firmware is now 1452320 which fits in the
allocated partition.
Signed-off-by: Damien George <damien@micropython.org>
So that mboot can be used to program encrypted/signed firmware to regions
of flash that are not the main application, eg that are the filesystem.
Signed-off-by: Damien George <damien@micropython.org>
The default for these is to enable them, but they can now be disabled
individually by a board configuration.
Signed-off-by: Damien George <damien@micropython.org>
If a board defines USBD_VID then that will be used instead of the default.
And then the board must also define all USBD_PID_xxx values that it needs.
Signed-off-by: Damien George <damien@micropython.org>
The following simple usocket example throws an error EINVAL on connect
import usocket
s = usocket.socket()
s.connect(usocket.getaddrinfo('www.micropython.org', 80)[0][-1])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OSError: [Errno 22] EINVAL
Fixing the context parameter in calls of net_context_get_family() and
net_context_get_type(), the connect works fine.
Tested on a nucleo_h743zi board.
Refactors the zephyr build infrastructure to build MicroPython as a
cmake target, using the recently introduced core cmake rules.
This change makes it possible to build the zephyr port like most other
zephyr applications using west or cmake directly. It simplifies building
with extra cmake arguments, such as specifying an alternate conf file or
adding an Arduino shield. It also enables building the zephyr port
anywhere in the host file system, which will allow regressing across
multiple boards with the zephyr twister script.
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
Disables frozen source modules in the zephyr port. They are deprecated
in the makefile rules and not implemented in the new cmake rules.
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
The underlying OS (the ESP-IDF) uses it's own internal errno codes and so
it's simpler and cleaner to use those rather than trying to convert
everything to the values defined in py/mperrno.h.
It's now replaced by cmake/idf.py. But a convenience Makefile is still
provided with traditional targets like "all" and "deploy".
Signed-off-by: Damien George <damien@micropython.org>
This commit adds support for building the esp32 port with cmake, and in
particular it builds MicroPython as a component within the ESP-IDF. Using
cmake and the ESP-IDF build infrastructure makes it much easier to maintain
the port, especially with the various new ESP32 MCUs and their required
toolchains.
Signed-off-by: Damien George <damien@micropython.org>
This allows changing the baudrate of the UART without reinitialising it
(reinitialising can lead to spurious characters sent on the TX line).
Signed-off-by: Damien George <damien@micropython.org>
On i.MX the SysTick IRQ cannot wake the CPU from a WFI so the CPU was
blocked on WFI waiting for USB data in mp_hal_stdin_rx_chr() even though it
had already arrived (because it may arrive just after calling the check
tud_cdc_available()). This commit fixes this problem by using SEV/WFE to
indicate that there has been a USB event.
The mp_hal_stdout_tx_strn() function is also fixed so that it doesn't
overflow the USB buffers.
Signed-off-by: Damien George <damien@micropython.org>
So that all MicroPython ports that use tinyusb use the same version. Also
requires fewer submodule checkouts when building rp2 along with other ports
that use tinyusb.
Signed-off-by: Damien George <damien@micropython.org>
START_SEC was changed in e0905e85a7.
Also, update the error message to mention how to format the partition at
the REPL, and make the total message shorter to save a bit of flash.
Signed-off-by: Damien George <damien@micropython.org>
In particular the firmware can now be built in a build directory that lives
outside the source tree, and the py/modarray.c file will still be found.
See issue #6837.
Signed-off-by: Damien George <damien@micropython.org>
The "word" referred to by BYTES_PER_WORD is actually the size of mp_obj_t
which is not always the same as the size of a pointer on the target
architecture. So rename this config value to better reflect what it
measures, and also prefix it with MP_.
For uses of BYTES_PER_WORD in setting the stack limit this has been
changed to sizeof(void *), because the stack usually grows with
machine-word sized values (eg an nlr_buf_t has many machine words in it).
Signed-off-by: Damien George <damien@micropython.org>
To simplify config, there's no need to specify MP_PLAT_PRINT_STRN if it's
the same as the default definition in py/mpconfig.h.
Signed-off-by: Damien George <damien@micropython.org>
Otherwise it resets the ADC peripheral each time a new ADC object is
constructed, which can reset other state that has already been set up.
See issue #6833.
Signed-off-by: Damien George <damien@micropython.org>
Default to just calling python since that is most commonly available: the
official installer or zipfiles from python.org, anaconda, nupkg all result
in python being available but not python3. In other words: the default
used so far is wrong. Note that os.name is 'posix' when running the python
version which comes with Cygwin or MSys2 so they are not affected by this.
However of all possible ways to get Python on Windows, only Cygwin provides
no python command so update the default way for running tests in the
README.
With mboot encrpytion and fsload enabled, the DEBUG build -O0 compiler
settings result in mboot no longer fitting in the 32k sector. This commit
changes this to -Og which also brings it into line with the regular stm32
build.
MCUs with device-only USB peripherals (eg L0, WB) do not implement (at
least not in the ST HAL) the HAL_PCD_DisconnectCallback event. So if a USB
cable is disconnected the USB driver does not deinitialise itself
(usbd_cdc_deinit is not called) and the CDC driver can stay in the
USBD_CDC_CONNECT_STATE_CONNECTED state. Then if the USB was attached to
the REPL, output can become very slow waiting in usbd_cdc_tx_always for
500ms for each character.
The disconnect event is not implemented on these MCUs but the suspend event
is. And in the situation where the USB cable is disconnected the suspend
event is raised because SOF packets are no longer received.
The issue of very slow output on these MCUs is fixed in this commit (really
worked around) by adding a check in usbd_cdc_tx_always to see if the USB
device state is suspended, and, if so, breaking out of the 500ms wait loop.
This should also help all MCUs for a real USB suspend.
A proper fix for MCUs with device-only USB would be to implement or somehow
synthesise the HAL_PCD_DisconnectCallback event.
See issue #6672.
Signed-off-by: Damien George <damien@micropython.org>
PIO state machines can make a conditional jump on the state of a pin: the
`JMP PIN` command. This requires the pin to be configured with
`sm_config_set_jmp_pin`, but until now we didn't have a way of doing that
in MicroPython.
This commit adds a new `jmp_pin=None` argument to `StateMachine`. If it is
not `None` then we try to interpret it as a Pin, and pass its value to
`sm_config_set_jmp_pin`.
Signed-off-by: Tim Radvan <tim@tjvr.org>
Add "make submodules" to commands when building for the first time.
Otherwise, on a first time build, the submodules have not been checked out
and a lot of `fatal error: nrfx.h: No such file or directory` errors are
printed.
It practically does the same as qstr_from_str and was only used in one
place, which should actually use the compile-time MP_QSTR_XXX form for
consistency; qstr_from_str is for runtime strings only.
Don't clear the IPCC channel flag until we've actually handled the incoming
data, or else the wireless firmware may clobber the IPCC buffer if more
data arrives. This requires masking the IRQ until the data is handled.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit adds a new port "rp2" which targets the new Raspberry Pi RP2040
microcontroller.
The build system uses pure cmake (with a small Makefile wrapper for
convenience). The USB driver is TinyUSB, and there is a machine module
with most of the standard classes implemented. Some examples are provided
in the examples/rp2/ directory.
Work done in collaboration with Graham Sanderson.
Signed-off-by: Damien George <damien@micropython.org>
It's enabled by default to retain the existing behaviour. A board can
disable this option if it manages mounting the filesystem itself, for
example in frozen code.
Signed-off-by: Damien George <damien@micropython.org>
Changes are:
- refactor to use new _create_element function
- support extended version of MOUNT element with block size
- support STATUS element
Signed-off-by: Damien George <damien@micropython.org>
This new element takes the form: (ELEM_TYPE_STATUS, 4, <address>). If this
element is present in the mboot command then mboot will store to the given
address the result of the filesystem firmware update process. The address
can for example be an RTC backup register.
Signed-off-by: Damien George <damien@micropython.org>
Instead it is now passed in as an optional parameter to the ELEM_MOUNT
element, with a compile-time configurable default.
Signed-off-by: Damien George <damien@micropython.org>
The superblock for littlefs is in block 0 and 1, but block 0 may be erased
or partially written, so block 1 must be checked if block 0 does not have a
valid littlefs superblock in it.
Prior to this commit, if block 0 did not contain a valid littlefs
superblock (but block 1 did) then the auto-detection would fail, mounting a
FAT filesystem would also fail, and the system would reformat the flash,
even though it may have contained a valid littlefs filesystem. This is now
fixed.
Signed-off-by: Damien George <damien@micropython.org>
* Fix a typo in the Makefile that prevented the debug build to be actually
enabled when BTYPE=debug is used.
* Add a missing header in modmachine.c that is used when a debug build is
created.
This commit improves some FTP implementation details for better
compatibility with FTP clients:
* The PWD command now puts quotes around the directory name before
returning it. This fixes BBEdit’s FTP client, which performs a PWD after
each CWD and gets confused if the returned directory path is not
surrounded by quotes.
* The FEAT command is now allowed before logging in. This fixes the lftp
client, which send FEAT first and gets confused (tries to use TLS) if the
server responds with 332.
With MICROPY_FLOAT_IMPL_FLOAT the results of utime.time(), gmtime() and
localtime() change only every 129 seconds. As one consequence
tests/extmod/vfs_lfs_mtime.py will fail on a unix port with LFS support.
With this patch these functions only return floats if
MICROPY_FLOAT_IMPL_DOUBLE is used. Otherwise they return integers.
To match the definition of GENERATE_PACK_DFU, so a board can customise the
location/name of this file if needed.
Signed-off-by: Damien George <damien@micropython.org>
To have at least one board configured with MBOOT_ENABLE_PACKING, for CI
testing purposes and demonstration of the feature.
Signed-off-by: Damien George <damien@micropython.org>
This commit adds support to stm32's mboot for signe, encrypted and
compressed DFU updates. It is based on inital work done by Andrew Leech.
The feature is enabled by setting MBOOT_ENABLE_PACKING to 1 in the board's
mpconfigboard.mk file, and by providing a header file in the board folder
(usually called mboot_keys.h) with a set of signing and encryption keys
(which can be generated by mboot_pack_dfu.py). The signing and encryption
is provided by libhydrogen. Compression is provided by uzlib. Enabling
packing costs about 3k of flash.
The included mboot_pack_dfu.py script converts a .dfu file to a .pack.dfu
file which can be subsequently deployed to a board with mboot in packing
mode. This .pack.dfu file is created as follows:
- the firmware from the original .dfu is split into chunks (so the
decryption can fit in RAM)
- each chunk is compressed, encrypted, a header added, then signed
- a special final chunk is added with a signature of the entire firmware
- all chunks are concatenated to make the final .pack.dfu file
The .pack.dfu file can be deployed over USB or from the internal filesystem
on the device (if MBOOT_FSLOAD is enabled).
See #5267 and #5309 for additional discussion.
Signed-off-by: Damien George <damien@micropython.org>
Prior to this fix, the final piece of data in a compressed file may have
been lost when decompressing.
Signed-off-by: Damien George <damien@micropython.org>
Changes are:
- Remove include of stm32's adc.h because it was recently changed and is
no longer compatible with teensy (and not used anyway).
- Remove define of __disable_irq in mpconfigport.h because it was clashing
with an equivalent definition in core/mk20dx128.h.
- Add -Werror to CFLAGS, and change -std=gnu99 to -std=c99.
Signed-off-by: Damien George <damien@micropython.org>
Mboot builds do not use the external SPI flash in caching mode, and
explicitly disabling it saves RAM and a small bit of flash.
Signed-off-by: Damien George <damien@micropython.org>
This only needs to be enabled if a board uses FAT FS on external SPI flash.
When disabled (and using external SPI flash) 4k of RAM can be saved.
Signed-off-by: Damien George <damien@micropython.org>
When littlefs is enabled extended reading must be supported, and using this
function to read the first block for auto-detection is more efficient (a
smaller read) and does not require a cached SPI-flash read.
Signed-off-by: Damien George <damien@micropython.org>
These functions enable SDRAM data retention in stop mode. Example usage,
in mpconfigboard.h:
#define MICROPY_BOARD_ENTER_STOP sdram_enter_low_power();
#define MICROPY_BOARD_LEAVE_STOP sdram_leave_low_power();
Calculate the bit timing from baudrate if provided, allowing sample point
override. This makes it a lot easier to make CAN work between different
MCUs with different clocks, prescalers etc.
Tested on F4, F7 and H7 Y/V variants.
This much buffer space is required for CDC data out endpoints to avoid any
buffer overflows when the USB CDC is saturated with data.
Signed-off-by: Damien George <damien@micropython.org>
The nrf52840-mdk-usb-dongle and pca10050 comes with a pre-flashed
bootloader (OpenBootloader).
This commit updates the boards "mpconfigboard.mk" to use DFU as
default flashing method and set the corresponding BOOTLOADER
settings such that nrf52840_open_bootloader_1.2.x.ld linker
script is used.
The default DFU flashing method can be disabled by issuing "DFU=0"
when invoking make. This will lead to "segger" being used as default
flashing tool. When using "DFU=0", the linker scripts will not
compensate for any MBR and Bootloader region being present, and might
overwrite them if they were present.
The commit also removes the custom linker script specific to
nrf52840-mdk-usb-dongle as it now points to a generic.
Updated nrf52840-mdk-usb-dongle's README.md to be more clear on
how to deploy the built firmware.
The port README.md has also been updated. In the list of target
boards a new column has been added to indicate which bootloader
is present on the target board. And for consistency, changed all
examples in the README.md to use "deploy" instead of "flash".
An additional Makefile parameter NRFUTIL_PORT can be set in order
to define the serial port to used for the DFU (Default: /dev/ttyACM0).
The "nrfutil" that is used as flasher towards OpenBootloader is
available for installation through Python "pip".
In case of SD=s140, SoftDevice ID 0xB6 is passed to nrfutil's package
generation which corresponds to SoftDevice s140 v6.1.1.
Add the option for "mpconfigboard.mk" to define whether the
board hosts a bootloader or not. The BOOTLOADER make variable
must be set to the name of the bootloader.
When the BOOTLOADER name is set it is also required to supply
the BOOTLOADER_VERSION_MAJOR and the BOOTLOADER_VERSION_MINOR
from the "mpconfigboards.mk". These will be used to resolve which
bootloader linker script that should be passed to the linker.
The BOOTLOADER section also supplies the C-compiler with
BOOTLOADER_<bootloader name>=<version major><version minor>
as a compiler define. This is for future use in case a bootloader
needs to do modification to the startup files or similar (like
setting the VTOR specific to a version of a bootloader).
Adding variables that can be set from other linker scripts:
- _bootloader_head_size:
Bootloader flash offset in front of the application.
- _bootloader_tail_size:
Bootloader offset from the tail of the flash.
In case the bootloader is located at the end.
- _bootloader_head_ram_size:
Bootloader RAM usage in front of the application.
Updated calculations of application flash and RAM.
Two issues are tackled:
1. The calculation of the correct length to print is fixed to treat the
precision as a maximum length instead as the exact length.
This is done for both qstr (%q) and for regular str (%s).
2. Fix the incorrect use of mp_printf("%.*s") to mp_print_strn().
Because of the fix of above issue, some testcases that would print
an embedded null-byte (^@ in test-output) would now fail.
The bug here is that "%s" was used to print null-bytes. Instead,
mp_print_strn is used to make sure all bytes are outputted and the
exact length is respected.
Test-cases are added for both %s and %q with a combination of precision
and padding specifiers.
The zephyr function net_shell_cmd_iface() was removed in zephyr v1.14.0,
therefore the MicroPython zephyr port did not build with newer zephyr
versions when CONFIG_NET_SHELL=y. Replace with a more general
shell_exec() function that can execute any zephyr shell command. For
example:
>>> zephyr.shell_exec("net")
Subcommands:
allocs :Print network memory allocations.
arp :Print information about IPv4 ARP cache.
conn :Print information about network connections.
dns :Show how DNS is configured.
events :Monitor network management events.
gptp :Print information about gPTP support.
iface :Print information about network interfaces.
ipv6 :Print information about IPv6 specific information and
configuration.
mem :Print information about network memory usage.
nbr :Print neighbor information.
ping :Ping a network host.
pkt :net_pkt information.
ppp :PPP information.
resume :Resume a network interface
route :Show network route.
stacks :Show network stacks information.
stats :Show network statistics.
suspend :Suspend a network interface
tcp :Connect/send/close TCP connection.
vlan :Show VLAN information.
websocket :Print information about WebSocket connections.
>>> zephyr.shell_exec("kernel")
kernel - Kernel commands
Subcommands:
cycles :Kernel cycles.
reboot :Reboot.
stacks :List threads stack usage.
threads :List kernel threads.
uptime :Kernel uptime.
version :Kernel version.
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
The -Og optimisation level produces a more realistic build, gives a better
debugging experience, and generates smaller code than -O0, allowing debug
builds to fit in flash.
This commit also assigns variables in can.c to prevent warnings when -Og is
used, and builds a board in CI with DEBUG=1 enabled.
Signed-off-by: Damien George <damien@micropython.org>
Allows reserving CAN, I2C, SPI, Timer and UART peripherals. If reserved
the peripheral cannot be accessed from Python.
Signed-off-by: Damien George <damien@micropython.org>
Even though IRQs are disabled this seems to be required on H7 Rev Y,
otherwise Systick interrupt triggers and the MCU leaves the stop mode
immediately.
This commit saves OSCs/PLLs state before STOP mode and restores them on
exit. Some boards use HSI48 for USB for example, others have PLL2/3
enabled, etc.
Also known as L2CAP "connection oriented channels". This provides a
socket-like data transfer mechanism for BLE.
Currently only implemented for NimBLE on STM32 / Unix.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Hardware I2C implementations must provide a .init() protocol method if they
want to support reconfiguration. Otherwise the default is that i2c.init()
raises an OSError (currently the case for all ports).
mp_machine_soft_i2c_locals_dict is renamed to mp_machine_i2c_locals_dict to
match the generic SPI bindings.
Fixes issue #6623 (where calling .init() on a HW I2C would crash).
Signed-off-by: Damien George <damien@micropython.org>
This fixes the build for non-STM32WB based boards when the NimBLE submodule
has not been fetched, and also allows STM32WB boards to build with BLE
disabled.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This is needed to moderate concurrent access to the internal flash, as
while an erase/write is in progress execution will stall on the wireless
core due to the bus being locked.
This implements Figure 10 from AN5289 Rev 3.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit switches the STM32WB HCI interface (between the two CPUs) to
require the use of MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS, and as a
consequence to require NimBLE. IPCC RX IRQs now schedule the NimBLE
handler to run via mp_sched_schedule.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This changes stm32 from using PENDSV to run NimBLE to use the MicroPython
scheduler instead. This allows Python BLE callbacks to be invoked directly
(and therefore synchronously) rather than via the ringbuffer.
The NimBLE UART HCI and event processing now happens in a scheduled task
every 128ms. When RX IRQ idle events arrive, it will also schedule this
task to improve latency.
There is a similar change for the unix port where the background thread now
queues the scheduled task.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This requires that the event handlers are called from non-interrupt context
(i.e. the MicroPython scheduler).
This will allow the BLE stack (e.g. NimBLE) to run from the scheduler
rather than an IRQ like PENDSV, and therefore be able to invoke Python
callbacks directly/synchronously. This allows writing Python BLE handlers
for events that require immediate response such as _IRQ_READ_REQUEST (which
was previous a hard IRQ) and future events relating to pairing/bonding.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Devices with RTC backup-batteries have been shown (very rarely) to have
incorrect RTC prescaler values. Such incorrect values mean the RTC counts
fast or slow, and will be wrong forever if the power/backup-battery is
always present.
This commit detects such a state at start up (hard reset) and corrects it
by reconfiguring the RTC prescaler values.
Signed-off-by: Damien George <damien@micropython.org>
And rename SRC_HAL -> HAL_SRC_C and SRC_USBDEV -> USBDEV_SRC_C for
consistency with other source variables.
Follow on from 0fff2e03fe
Signed-off-by: Damien George <damien@micropython.org>
Prior to this change machine.mem32['foo'] (or using any other non-integer
subscript) could result in a fault due to 'foo' being interpreted as an
integer. And when writing code it's hard to tell if the fault is due to a
bad subscript type, or an integer subscript that specifies an invalid
memory address.
The type of the object used in the subscript is now tested to be an
integer by using mp_obj_get_int_truncated instead of
mp_obj_int_get_truncated. The performance hit of this change is minimal,
and machine.memX objects are more for convenience than performance (there
are many other ways to read/write memory in a faster way),
Fixes issue #6588.
The file `$(BUILD)/firmware.bin` was used by the target `deploy-stlink` and
`deploy-openocd` but it was generated indirectly by the target
`firmware.dfu`.
As this file could be used to program boards directly by a Mass Storage
copy, it's better to make it explicitly generated.
Additionally, some target are refactored to remove redundancy and be more
explicit on dependencies.
Running the update inside the soft-reset loop will mean that (on boards
like PYBD that use a bootloader) the same reset mode is used each
reset loop, eg factory reset occurs each time.
Signed-off-by: Damien George <damien@micropython.org>
Add working example code to provide a starting point for users with files
that they can just copy, and include the modules in the coverage test to
verify the complete user C module build functionality. The cexample module
uses the code originally found in cmodules.rst, which has been updated to
reflect this and partially rewritten with more complete information.
Support building .cpp files and linking them into the micropython
executable in a way similar to how it is done for .c files. The main
incentive here is to enable user C modules to use C++ files (which are put
in SRC_MOD_CXX by py.mk) since the core itself does not utilize C++.
However, to verify build functionality a unix overage test is added. The
esp32 port already has CXXFLAGS so just add the user modules' flags to it.
For the unix port use a copy of the CFLAGS but strip the ones which are not
usable for C++.
The same seed will only occur if the board is the same, the RTC has the
same time (eg freshly powered up) and the first call to this function (eg
via an "import random") is done at exactly the same time since reset.
Signed-off-by: Damien George <damien@micropython.org>
For seeding, the RNG function of the ESP-IDF is used, which is told to be a
true RNG, at least when WiFi or Bluetooth is enabled. Seeding on import is
as per CPython. To obtain a reproducible sequence of pseudo-random numbers
one must explicitly seed with a known value.
Prior to this commit, the ADC calibration code was never executing because
ADVREGEN bit was set making the CR register always non-zero.
This commit changes the logic so that ADC calibration is always run when
the ADC is disabled and an ADC channel is initialised. It also uses the LL
API functions to do the calibration, to make sure it is done correctly on
each MCU variant.
Signed-off-by: Damien George <damien@micropython.org>
If the device is not connected over USB CDC to a host then all output to
the CDC (eg initial boot messages) is written to the CDC TX buffer with
wrapping, so that the most recent data is retained when the USB CDC is
eventually connected (eg so the REPL banner is displayed upon connection).
This commit fixes a bug in this behaviour, which was likely introduced in
e4fcd216e0, where the initial data in the CDC
TX buffer is repeated multiple times on first connection of the device to
the host.
Signed-off-by: Damien George <damien@micropython.org>
This is a generally useful feature and because it's part of the object
model it cannot be added at runtime by some loadable Python code, so enable
it on the standard unix build.
The last argument of TUD_CDC_DESCRIPTOR() is the endpoint size (or
wMaxPacketSize), not the CDC RX buffer size (which can be larger than the
endpoint size).
Signed-off-by: Damien George <damien@micropython.org>
When installing WS firmware, the very first GET_STATE can take several
seconds to respond (especially with the larger binaries like
BLE_stack_full).
Allows stm.rfcore_sys_hci to take an optional timeout, defaulting to
SYS_ACK_TIMEOUT_MS (which is 250ms).
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The flash can sometimes be in an already-unlocked state, and attempting to
unlock it again will cause an immediate reset. So make _Flash.unlock()
check FLASH_CR_LOCK to get the current state.
Also fix some magic numbers for FLASH_CR_LOCK AND FLASH_CR_STRT.
The machine.reset() could be removed because it no longer crashes now that
the flash unlock is fixed.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit adds a script that can be run on-device to install FUS and WS
binaries from the filesystem. Instructions for use are provided in
the rfcore_firmware.py file.
The commit also removes unneeded functionality from the existing rfcore.py
debug script (and renames it rfcore_debug.py).
The new functions provide FUS/WS status, version and SYS HCI commands:
- stm.rfcore_status()
- stm.rfcore_fw_version(fw_id)
- stm.rfcore_sys_hci(ogf, ocf, cmd)
Changes are:
- Fix missing IRQ handler when SDMMC2 is used instead of SDMMC1 with H7
MCUs.
- Removed outdated H7 series compatibility macros.
- Defined common IRQ handler macro for F4 series.
It requires mp_hal_time_ns() to be provided by a port. This function
allows very accurate absolute timestamps.
Enabled on unix, windows, stm32, esp8266 and esp32.
Signed-off-by: Damien George <damien@micropython.org>
With a warning that this way of constructing software I2C/SPI is
deprecated. The check and warning will be removed in a future release.
This should help existing code to migrate to the new SoftI2C/SoftSPI types.
Signed-off-by: Damien George <damien@micropython.org>
Previous commits removed the ability for one I2C/SPI constructor to
construct both software- or hardware-based peripheral instances. Such
construction is now split to explicit soft and non-soft types.
This commit makes both types available in all ports that previously could
create both software and hardware peripherals: machine.I2C and machine.SPI
construct hardware instances, while machine.SoftI2C and machine.SoftSPI
create software instances.
This is a breaking change for use of software-based I2C and SPI. Code that
constructed I2C/SPI peripherals in the following way will need to be
changed:
machine.I2C(-1, ...) -> machine.SoftI2C(...)
machine.I2C(scl=scl, sda=sda) -> machine.SoftI2C(scl=scl, sda=sda)
machine.SPI(-1, ...) -> machine.SoftSPI(...)
machine.SPI(sck=sck, mosi=mosi, miso=miso)
-> machine.SoftSPI(sck=sck, mosi=mosi, miso=miso)
Code which uses machine.I2C and machine.SPI classes to access hardware
peripherals does not need to change.
Signed-off-by: Damien George <damien@micropython.org>
The SoftSPI constructor is now used soley to create SoftSPI instances, it
can no longer delegate to create a hardware-based SPI instance.
Signed-off-by: Damien George <damien@micropython.org>
The SoftI2C constructor is now used soley to create SoftI2C instances, it
can no longer delegate to create a hardware-based I2C instance.
Signed-off-by: Damien George <damien@micropython.org>
Also rename machine_i2c_type to mp_machine_soft_i2c_type. These changes
make it clear that it's a soft-I2C implementation, and match SoftSPI.
Signed-off-by: Damien George <damien@micropython.org>
Zephyr v2.4.0 added a const qualifier to usages of struct device to
allow storing device driver instances exclusively in flash and thereby
reduce ram footprint.
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
Make the instructions more complete by documenting all needed steps for
starting from scratch. Also add a section for MSYS2 since the Travis build
uses it as well and it's a good alternative for Cygwin. Remove the mingw32
reference since it's not readily available anymore in most Linux distros
nor compiles successfully.
The device info table has a different layout when core 2 is in FUS mode.
In particular it's larger than the 32 bytes used when in WS mode and if the
correct amount of space is not allocated then the end of the table may be
overwritten with other data (eg with FUS version 0.5.3). So update the
structure to fix this.
Also update rfcore.py to disable IRQs (which are enabled by rfcore.c), to
not depend on uctypes, and to not require the asm_thumb emitter.
Signed-off-by: Damien George <damien@micropython.org>
And enable this feature on unix, the coverage variant. The .exp test file
is needed so the test can run on CPython versions prior to "@=" operator
support.
Signed-off-by: Damien George <damien@micropython.org>
For time-based functions that work with absolute time there is the need for
an Epoch, to set the zero-point at which the absolute time starts counting.
Such functions include time.time() and filesystem stat return values. And
different ports may use a different Epoch.
To make it clearer what functions use the Epoch (whatever it may be), and
make the ports more consistent with their use of the Epoch, this commit
renames all Epoch related functions to include the word "epoch" in their
name (and remove references to "2000").
Along with this rename, the following things have changed:
- mp_hal_time_ns() is now specified to return the number of nanoseconds
since the Epoch, rather than since 1970 (but since this is an internal
function it doesn't change anything for the user).
- littlefs timestamps on the esp8266 have been fixed (they were previously
off by 30 years in nanoseconds).
Otherwise, there is no functional change made by this commit.
Signed-off-by: Damien George <damien@micropython.org>
To portably get the Epoch. This is simply aliased to localtime() on ports
that are not timezone aware.
Signed-off-by: Damien George <damien@micropython.org>
This commit removes release-specific builds for the esp8266 and makes the
normal build of the GENERIC board more like the release build. This makes
esp8266 like all the other ports, for which there is no difference between
a daily build and a release build, making things less confusing.
Release builds were previously defined by UART_OS=-1 (disable OS messages)
and using manifest_release.py to include more frozen modules.
The changes in this commit are:
- Remove manifest_release.py.
- Add existing modules from manifest_release.py (except example code)
to the GENERIC board's manifest.py file.
- Change UART_OS default to -1 to disable OS messages by default.
Signed-off-by: Damien George <damien@micropython.org>
PPP support was disabled in 96008ff59a -
marked as "unsupported" due to an early IDF v4 release. With the currently
supported IDF v4.x version - 4c81978a - it appears to be working just fine.
This commit changes the default logging level on all esp32 boards to ERROR.
The esp32 port is now stable enough that it makes sense to remove the info
logs to make the output cleaner, and to match other ports. More verbose
logging can always be reenabled via esp.osdebug().
This also fixes issue #6354, error messages from NimBLE: the problem is
that ble.active(True) will cause the IDF's NimBLE port to reset the
"NimBLE" tag back to the default level (which was INFO prior to this
commit). Even if the user had previously called esp.osdebug(None), because
the IDF is setting the "NimBLE" tag back to the default (INFO), the
messages will continue to be shown.
The one quirk is that if the user does want to see the additional logging,
then they must call esp.osdebug(0, 3) after ble.active(True) to undo the
IDF setting the level back to the default (now ERROR). This means that
it's impossible (via Python/esp.osdebug) to see stack-startup logging,
you'd have to recompile with the default level changed back to INFO.
Support freezing modules via manifest.py for consistency with the other
ports. In essence this comes down to calling makemanifest.py and adding
the resulting .c file to the build. Note the file with preprocessed qstrs
has been renamed to match what makemanifest.py expects and which is also
the name all other ports use.
The mpconfigport.h file is an internal header and should only ever be
included once by mpconfig.h.
Signed-off-by: Damien George <damien@micropython.org>
This allows prototyping rfcore.c improvements from Python.
This was mostly written by @dpgeorge with small modifications to work after
rfcore_init() by @jimmo.
Before this change there was up to a 128ms delay on incoming payloads from
CPU2 as it was polled by SysTick. Now the RX IRQ immediately schedules the
PendSV.
This is required to allow using WS firmware newer than 1.1.1 concurrently
with USB (e.g. USB VCP). It prevents CPU2 from modifying the CLK48 config
on boot.
Tested on WS=1.8 FUS=1.1.
See AN5289 and https://github.com/micropython/micropython/issues/6316
- Split tables and buffers into SRAM2A/2B.
- Use structs rather than word offsets to access tables.
- Use FLASH_IPCCDBA register value rather than option bytes directly.
This allows `ble.active(1)` to fail correctly if the HCI controller is
unavailable.
It also avoids an infine loop in the NimBLE event handler where NimBLE
doesn't correctly detect that the HCI controller is unavailable and keeps
trying to reset.
Furthermore, it fixes an issue where GATT service registrations were left
allocated, which led to a bad realloc if the stack was activated multiple
times.
MicroPython and NimBLE must be on the same core, for synchronisation of the
BLE ringbuf and the MicroPython scheduler. However, in the current IDF
versions (3.3 and 4.0) there are issues (see e.g. #5489) with running
NimBLE on core 1.
This change - pinning both tasks to core 0 - makes it possible to reliably
run the BLE multitests on esp32 boards.
This commit adds support for using Bluetooth on the unix port via a H4
serial interface (distinct from a USB dongle), with both BTstack and NimBLE
Bluetooth stacks.
Note that MICROPY_PY_BLUETOOTH is now disabled for the coverage variant.
Prior to this commit Bluetooth was anyway not being built on Travis because
libusb was not detected. But now that bluetooth works in H4 mode it will
be built, and will lead to a large decrease in coverage because Bluetooth
tests cannot be run on Travis.
Previously the interaction between the different layers of the Bluetooth
stack was different on each port and each stack. This commit defines
common interfaces between them and implements them for cyw43, btstack,
nimble, stm32, unix.
mp_irq_init() is useful when the IRQ object is allocated by the caller.
The mp_irq_methods_t.init method is not used anywhere so has been removed.
Signed-off-by: Damien George <damien@micropython.org>
By setting MICROPY_EPOCH_IS_1970 a port can opt to use 1970/1/1 as the
Epoch for timestamps returned by stat(). And this setting is enabled on
the unix and windows ports because that's what they use.
Signed-off-by: Damien George <damien@micropython.org>
On 32-bit builds these stat fields will overflow a small-int, so use
mp_obj_new_int_from_uint to construct the int object.
Signed-off-by: Damien George <damien@micropython.org>
gettimeofday returns seconds since 2000/1/1 so needs to be adjusted to
seconds since 1970/1/1 to give the correct return value of mp_hal_time_ns.
Signed-off-by: Damien George <damien@micropython.org>
Updating to Black v20.8b1 there are two changes that affect the code in
this repository:
- If there is a trailing comma in a list (eg [], () or function call) then
that list is now written out with one line per element. So remove such
trailing commas where the list should stay on one line.
- Spaces at the start of """ doc strings are removed.
Signed-off-by: Damien George <damien@micropython.org>
Prior to this commit, if you configure a pin as an output type (I2C in this
example) and then later configure it back as an input, then it will report
the type incorrectly. Example:
>>> import machine
>>> b6 = machine.Pin('B6')
>>> b6
Pin(Pin.cpu.B6, mode=Pin.IN)
>>> machine.I2C(1)
I2C(1, scl=B6, sda=B7, freq=420000)
>>> b6
Pin(Pin.cpu.B6, mode=Pin.ALT_OPEN_DRAIN, pull=Pin.PULL_UP, af=Pin.AF4_I2C1)
>>> b6.init(machine.Pin.IN)
>>> b6
Pin(Pin.cpu.B6, mode=Pin.ALT_OPEN_DRAIN, af=Pin.AF4_I2C1)
With this commit the last print now works:
>>> b6
Pin(Pin.cpu.B6, mode=Pin.IN)
Include storage/flash_map.h unconditionally so we always have access to the
FLASH_AREA_LABEL_EXISTS macro, even if CONFIG_FLASH_MAP is not defined.
This fixes a build error for the qemu_x86 board:
main.c:108:63: error: missing binary operator before token "("
108 | #elif defined(CONFIG_FLASH_MAP) && FLASH_AREA_LABEL_EXISTS(storage)
| ^
../../py/mkrules.mk:88: recipe for target 'build/genhdr/qstr.i.last' failed
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
The SCSI driver calls GetCapacity to get the block size and number of
blocks of the underlying block-device/LUN. It caches these values and uses
them later on to verify that reads/writes are within the bounds of the LUN.
But, prior to this commit, there was only one set of cached values for all
LUNs, so the bounds checking for a LUN could use incorrect values, values
from one of the other LUNs that most recently updated the cached values.
This would lead to failed SCSI requests.
This commit fixes this issue by having separate cached values for each LUN.
Signed-off-by: Damien George <damien@micropython.org>
Enabling the following features for all targets, except for nrf51
targets compiled to be used with SoftDevice:
- MICROPY_PY_ARRAY_SLICE_ASSIGN
- MICROPY_PY_SYS_STDFILES
- MICROPY_PY_UBINASCII
Splitting mpconfigport.h into multiple device specific
files in order to facilitate variations between devices.
Due to the fact that the devices might have variations in
features and also variations in flash size it makes sense
that some devices offers more functionality than others
without being limited by restricted devices.
For example more micropython features can be activated for
nrf52840 with 1MB flash, compared to nrf51 with 256KB.
This code is imported from musl, to match existing code in libm_dbl.
The file is also added to the build in stm32/Makefile. It's not needed by
the core code but, similar to c5cc64175b,
allows round() to be used by user C modules or board extensions.
A previous commit 3a9d948032 can cause
lock-ups of the RMT driver, so this commit reverses that, adds a loop_en
flag, and explicitly controls the TX interrupt in write_pulses(). This
provides correct looping, non-blocking writes and sensible behaviour for
wait_done().
See also #6167.
So that micropython-dev can be used to test VFS code, and inspect and build
filesystem images that are compatible with bare-metal systems.
Signed-off-by: Damien George <damien@micropython.org>
This commit adds time.ticks_ms/us support using RTC1 as the timebase. It
also adds the time.ticks_add/diff helper functions. This feature can be
enabled using MICROPY_PY_TIME_TICKS. If disabled the system uses the
legacy sleep methods and does not have any ticks functions.
In addition support for MICROPY_EVENT_POLL_HOOK was added to the
time.sleep_ms(x) function, making this function more power efficient and
allows support for select.poll/asyncio. To support this, the RTC's CCR0
was used to schedule a ~1msec event to wakeup the CPU.
Some important notes about the RTC timebase:
- Since the granularity of RTC1's ticks are approx 30usec, time.ticks_us is
not perfect, does not have 1us resolution, but is otherwise quite usable.
For tighter measurments the ticker's 1MHz counter should be used.
- time.ticks_ms(x) should *not* be called in an IRQ with higher prio than
the RTC overflow irq (3). If so it introduces a race condition and
possibly leads to wrong tick calculations.
See #6171 and #6202.
When compiling for debug (-O0) the .text segment cannot fit the flash
region when MICROPY_ROM_TEXT_COMPRESSION=1, because the compiler does not
optimise away the large if-else chain used to select the correct compressed
string.
This commit enforces MICROPY_ROM_TEXT_COMPRESSION=0 when compiling for
debug (DEBUG=1).
The storage space of the advertisement name is not declared static, leading
to a random advertisement name. This commit fixes the issue by declaring
it static.
The Bluetooth link gets disconnected when connecting from a PC after 30-40
seconds. This commit adds handling of the data length update request. The
data length parameter pointer is set to NULL in the reply, letting the
SoftDevice automatically set values and use them in the data length update
procedure.
mp_keyboard_interrupt() triggers a compiler error because the function is
implicitly declared. This commit adds "py/runtime.h" to the includes.
Fixes issue #5732.
Changes are:
- The default manifest.py is moved to the variants directory (it's in
"boards" in other ports).
- The coverage variant now uses a custom manifest in its variant directory
to add frzmpy/frzstr.
- The frzmpy/frzstr tests are moved to variants/coverage/.
Polling mode will cause failures with the mass-erase command due to USB
timeouts, because the USB IRQs are not being serviced. Swiching from
polling to IRQ mode fixes this because the USB IRQs can be serviced between
page erases.
Note that when the flash is being programmed or erased the MCU is halted
and cannot respond to USB IRQs, because mboot runs from flash, as opposed
to the built-in bootloader which is in system ROM. But the maximum delay
in responding to an IRQ is the time taken to erase a single page, about
100ms for large pages, and that is short enough that the USB does not
timeout on the host side.
Recent tests have shown that in the current mboot code IRQ mode is pretty
much the same speed as polling mode (within timing error), code size is
slightly reduced in IRQ mode, and IRQ mode idles at about half of the power
consumption as polling mode.
This is treated more like a "delay before continuing" in the spec and
official tools and does not appear to be really needed. In particular,
downloading firmware is much slower with non-zero timeouts because the host
must pause by the timeout between sending each DFU_GETSTATUS to poll for
download/erase complete.
Supports hard and soft interrupts. In the current implementation, soft
interrupt callbacks will only be called when the VM is executing, ie they
will not be called during a blocking kernel call like k_msleep. And the
behaviour of hard interrupt callbacks will depend on the underlying device,
as well as the amount of ISR stack space.
Soft and hard interrupts tested on frdm_k64f and nucleo_f767zi boards.
Signed-off-by: Damien George <damien@micropython.org>