If opening of /dev/mem has failed an `OSError` is appropriately raised, but
the next time `mem8/16/32` is accessed the invalid file descriptor is used
and the program gets a SIGSEGV.
Replaces "PYB: soft reboot" with "MPY: soft reboot", etc.
Having a consistent prefix across ports reduces the difference between
ports, which is a general goal. And this change won't break pyboard.py
because that tool only looks for "soft reboot".
Adds support for 3 Cortex-M boards, selectable via "BOARD" in the Makefile:
- microbit, Cortex-M0 via nRF51822
- netduino2, Cortex-M3 via STM32F205
- mps2-an385, Cortex-M3 via FPGA
netduino2 is the default board because it's supported by older qemu
versions (down to at least 2.5.0).
Instead of checking each callback (currently storage and dma) explicitly
for each SysTick IRQ, use a simple circular function table indexed by the
lower bits of the millisecond tick counter. This allows callbacks to be
easily enabled/disabled at runtime, and scales well to a large number of
callbacks.
This is a good board to demonstrate the use of Mboot because it only has a
USB HS port exposed so the native ST DFU mode cannot be used. With Mboot
this port can be used.
If a custom bootloader is enabled (eg mboot) then machine.bootloader() will
now enter that loader. To get the original ST DFU loader pass any argument
to the function, like machine.bootloader(1).
Don't exclude the Timer instance 1 entry from machine_timer_obj[] when
using soft PWM. The usage is already checked when creating the Timer,
so just create an empty entry.
If needed these parameters can be added back and made functional one at a
time. It's better to explicitly not support them than to silently allow
but ignore them.
Python defines warnings as belonging to categories, where category is a
warning type (descending from exception type). This is useful, as e.g.
allows to disable warnings selectively and provide user-defined warning
types. So, implement this in MicroPython, except that categories are
represented just with strings. However, enough hooks are left to implement
categories differently per-port (e.g. as types), without need to patch each
and every usage.
With clock bypass enabled the attached SD card is clocked at the maximum
48MHz. But some SD cards are unreliable at these rates. Although it's
nice to have high speed transfers it's more important that the transfers
are reliable for all cards. So disable this clock bypass option.
This way the UART REPL does not need the MicroPython heap and exists
outside the MicroPython runtime, allowing characters to still be received
during a soft reset.
Auto-detection of the crystal frequency is convenient and allows for a
single binary for many different boards. But it can be unreliable in
certain situations so in production, for a given board, it's recommended to
configure the correct fixed frequency.
Configuration for the build is now specified using sdkconfig rather than
sdkconfig.h, which allows for much easier configuration with defaults from
the ESP IDF automatically applied. sdkconfig.h is generated using the new
ESP IDF kconfig_new tool written in Python. Custom configuration for a
particular ESP32 board can be specified via the make variable SDKCONFIG.
The esp32.common.ld file is also now generated using the standard ESP IDF
ldgen.py tool.
When the ESP IDF builds a project it puts all separate components into
separate .a library archives. And then the esp32.common.ld linker script
references these .a libraries by explicit name to put certain object files
in iRAM.
This patch does a similar thing for the custom build system used here,
putting all IDF .o's into their respective .a. So a custom linker script
is no longer needed.
ISR's no longer need to be in iRAM, and the ESP IDF provides an option to
specify that they are in iRAM if an application needs lower latency when
handling them. But we don't use this feature for user interrupts: both
timer and gpio ISR routines are registered without the ESP_INTR_FLAG_IRAM
option, and so the scheduling code no longer needs to be in iRAM.
The new compile-time option is MICROPY_HW_USB_MAX_POWER_MA. Set this in
the board configuration file to the maximum current in mA that the board
will draw over USB. The default is 500mA.
The new compile-time option is MICROPY_HW_USB_SELF_POWERED. Set this
option to 1 in the board configuration file to indicate that the USB device
is self powered. This option is disabled by default (previous behaviour).
It can be that LSEON and LSERDY are set yet the RTC is not enabled (this
can happen for example when coming out of the ST DFU mode on an F405 with
the RTC not previously initialised). In such a case the RTC is never
started because the code thinks it's already running. This patch fixes
this case by always checking if RTCEN is set when booting up (and also
testing for a valid RTCSEL value in the case of using an LSE).
One can't use pthread calls in a signal handler because they are not
async-signal-safe (see man signal-safety). Instead, sem_post can be used
to post from within a signal handler and this should be more efficient than
using a busy wait loop, waiting on a volatile variable.
This aligns more closely with the hardware, that there are two, fixed HW
SPI peripherals. And it allows to recreate the HW SPI objects without
error, as well as create them again after a soft reset.
Fixes issue #4103.
In order to suit the more common 800KHz by default (instead of 400KHz), and
also have the same behaviour as the esp8266 port.
Resolves#4396.
Note! This is a breaking change. Anyone that has previously used the
NeoPixel class on an ESP32 board may be affected.
The original behaviour of open-drain-high was to use the open-drain mode of
the GPIO pin, and this seems to make driving a DHT more reliable. See
issue #4233.
The ESP IDF system already provides a math library, and that one is likely
to be better tuned to the Xtensa architecture. The IDF components are also
tested against its own math library, so best not to override it. Using the
system provided library also allows to easily switch to double-precision
floating point by changing MICROPY_FLOAT_IMPL to MICROPY_FLOAT_IMPL_DOUBLE.
So that the user can explicitly deactivate UART(0) if needed. See
issue #4314.
This introduces some risk to "brick" the device, if the user disables the
REPL without providing an alternative REPL (eg WebREPL), or any way to
reenable it. In such a case the device needs to be erased and
reprogrammed. This seems unavoidable, given the desire to have the option
to use the UART for something other than the REPL.
Without the static qualifier these objects will be kept by the linker even
if they are unused. So this patch saves some RAM when these features are
unused by a board.
If there are many short reads to a socket in a row (eg by readline) then
releasing and acquiring the GIL each time will give very poor throughput.
So first poll the socket to see if it has data, and if it does then don't
release the GIL.
Otherwise, if multiple threads are active, printing data to the REPL may be
very slow because in some cases only one character is output per call to
mp_hal_stdout_tx_strn.
On MCUs other than F4 the ORE (overrun error) flag needs to be cleared
independently of clearing RXNE, even though both are wired to trigger the
same RXNE IRQ. In the case that an overrun occurred it's necessary to
explicitly clear the ORE flag or else the RXNE interrupt will keep firing.
Otherwise IRQs may not be enabled for the user UART.irq() handler. In
particular this fixes the user IRQ_RXIDLE interrupt so that it triggers
even when there is no RX buffer.
The new option MICROPY_HW_SDCARD_MOUNT_AT_BOOT can now be defined to 0 in
mpconfigboard.h to allow SD hardware to be enabled but not auto-mounted at
boot. This feature is enabled by default to retain previous behaviour.
Previously, if an SD card is enabled in hardware it is also used to boot
from. While this can be disabled with a SKIPSD file on internal flash,
this wont be available at first boot or if the internal flash gets
corrupted.
Due to new webpages at nordicsemi.com, the download links
for Bluetooth LE stacks were broken.
This patch updates the links to new locations for the current
targets.
This UART_HandleTypeDef is quite large (around 70 bytes in RAM needed for
each UART object) and is not needed: instead the state of the peripheral
held in its registers provides all the required information.
The pin alternate function information is derived from ST's datasheet
https://www.st.com/resource/en/datasheet/stm32l432kc.pdf
In the datasheet, the line 2 of AF4 includes I2C2 but actually the chip
does not have I2C2 so it is removed.
As per the machine.UART documentation, this is used to set the length of
the RX buffer. The legacy read_buf_len argument is retained for backwards
compatibility, with rxbuf overriding it if provided.
Also change the order of printing of flow so it is after stop (so bits,
parity, stop are one after the other), and reduce code size by using
mp_print_str instead of mp_printf where possible.
See issue #1981.
This is necessary for two reasons: 1) FreeRTOS still needs the TCB data
structure even after vPortCleanUpTCB has been called, so this latter hook
function cannot free the TCB, and there is no where else to safely delete
it (this behaviour has changed recently in the ESP IDF); 2) when using
external SPI RAM the uPy heap is in this external memory but the task stack
must be allocated from internal SRAM.
Fixes issue #3904.
We standardized to provide uos.remove() as a more obvious and user-friendly
name. That's what written in the docs. The Unix port implementation
predates this convention, so update it now.
Building axtls gives a lot of warnings with -Wall enabled, and explicitly
disabling all of them cannot be done in a way compatible with gcc and
clang, and likely other compilers. So just use -Wno-all to prevent all of
the extra warnings (in addition to the necessary -Wno-unused-parameter,
-Wno-uninitialized, -Wno-sign-compare and -Wno-old-style-definition).
Fixes issue #4182.
Configurable via MICROPY_MODULE_GETATTR, disabled by default. Among other
things __getattr__ for modules can help to build lazy loading / code
unloading at runtime.
Configurable via MICROPY_PY_BUILTINS_STR_COUNT. Default is enabled.
Disabled for bare-arm, minimal, unix-minimal and zephyr ports. Disabling
it saves 408 bytes on x86.
1. Return correct error code for non-blocking vs timed out socket
(POSIX returns EAGAIN for both, we want ETIMEDOUT in case of timed
out socket). To achieve this, blocking/non-blocking flag is added
to the mp_obj_socket_t, to avoid issuing fcntl() syscall each time
EAGAIN occurs. (mp_obj_socket_t used to be 8 bytes, having some room
in a standard 16-byte alloc block.)
2. Handle socket.settimeout(0) properly - in Python, that means
non-blocking mode, but SO_RCVTIMEO/SO_SNDTIMEO of 0 is infinite
timeout.
3. Overall, make sure that socket.settimeout() call switches blocking
state as expected.
Prior to this commit the USB CDC used the USB start-of-frame (SOF) IRQ to
regularly check if buffered data needed to be sent out to the USB host.
This wasted resources (CPU, power) if no data needed to be sent.
This commit changes how the USB CDC transmits buffered data:
- When new data is first available to send the data is queued immediately
on the USB IN endpoint, ready to be sent as soon as possible.
- Subsequent additions to the buffer (via usbd_cdc_try_tx()) will wait.
- When the low-level USB driver has finished sending out the data queued
in the USB IN endpoint it calls usbd_cdc_tx_ready() which immediately
queues any outstanding data, waiting for the next IN frame.
The benefits on this new approach are:
- SOF IRQ does not need to run continuously so device has a better chance
to sleep for longer, and be more responsive to other IRQs.
- Because SOF IRQ is off, current consumption is reduced by a small amount,
roughly 200uA when USB is connected (measured on PYBv1.0).
- CDC tx throughput (USB IN) on PYBv1.0 is about 2.3 faster (USB OUT is
unchanged).
- When USB is connected, Python code that is executing is slightly faster
because SOF IRQ no longer interrupts continuously.
- On F733 with USB HS, CDC tx throughput is about the same as prior to this
commit.
- On F733 with USB HS, Python code is about 5% faster because of no SOF.
As part of this refactor, the serial port should no longer echo initial
characters when the serial port is first opened (this only used to happen
rarely on USB FS, but on USB HS is was more evident).