stm32: Split out UART Python bindings from uart.c to machine_uart.c.
This commit is contained in:
parent
55830dd9bf
commit
a2271532be
@ -243,6 +243,7 @@ SRC_C = \
|
||||
help.c \
|
||||
machine_i2c.c \
|
||||
machine_spi.c \
|
||||
machine_uart.c \
|
||||
modmachine.c \
|
||||
modpyb.c \
|
||||
modstm.c \
|
||||
|
596
ports/stm32/machine_uart.c
Normal file
596
ports/stm32/machine_uart.c
Normal file
@ -0,0 +1,596 @@
|
||||
/*
|
||||
* This file is part of the MicroPython project, http://micropython.org/
|
||||
*
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2013-2018 Damien P. George
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdarg.h>
|
||||
|
||||
#include "py/runtime.h"
|
||||
#include "py/stream.h"
|
||||
#include "py/mperrno.h"
|
||||
#include "py/mphal.h"
|
||||
#include "lib/utils/interrupt_char.h"
|
||||
#include "uart.h"
|
||||
#include "irq.h"
|
||||
#include "pendsv.h"
|
||||
|
||||
/// \moduleref pyb
|
||||
/// \class UART - duplex serial communication bus
|
||||
///
|
||||
/// UART implements the standard UART/USART duplex serial communications protocol. At
|
||||
/// the physical level it consists of 2 lines: RX and TX. The unit of communication
|
||||
/// is a character (not to be confused with a string character) which can be 8 or 9
|
||||
/// bits wide.
|
||||
///
|
||||
/// UART objects can be created and initialised using:
|
||||
///
|
||||
/// from pyb import UART
|
||||
///
|
||||
/// uart = UART(1, 9600) # init with given baudrate
|
||||
/// uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters
|
||||
///
|
||||
/// Bits can be 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2.
|
||||
///
|
||||
/// A UART object acts like a stream object and reading and writing is done
|
||||
/// using the standard stream methods:
|
||||
///
|
||||
/// uart.read(10) # read 10 characters, returns a bytes object
|
||||
/// uart.read() # read all available characters
|
||||
/// uart.readline() # read a line
|
||||
/// uart.readinto(buf) # read and store into the given buffer
|
||||
/// uart.write('abc') # write the 3 characters
|
||||
///
|
||||
/// Individual characters can be read/written using:
|
||||
///
|
||||
/// uart.readchar() # read 1 character and returns it as an integer
|
||||
/// uart.writechar(42) # write 1 character
|
||||
///
|
||||
/// To check if there is anything to be read, use:
|
||||
///
|
||||
/// uart.any() # returns True if any characters waiting
|
||||
|
||||
STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
if (!self->is_enabled) {
|
||||
mp_printf(print, "UART(%u)", self->uart_id);
|
||||
} else {
|
||||
mp_int_t bits;
|
||||
switch (self->uart.Init.WordLength) {
|
||||
#ifdef UART_WORDLENGTH_7B
|
||||
case UART_WORDLENGTH_7B: bits = 7; break;
|
||||
#endif
|
||||
case UART_WORDLENGTH_8B: bits = 8; break;
|
||||
case UART_WORDLENGTH_9B: default: bits = 9; break;
|
||||
}
|
||||
if (self->uart.Init.Parity != UART_PARITY_NONE) {
|
||||
bits -= 1;
|
||||
}
|
||||
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=",
|
||||
self->uart_id, self->uart.Init.BaudRate, bits);
|
||||
if (self->uart.Init.Parity == UART_PARITY_NONE) {
|
||||
mp_print_str(print, "None");
|
||||
} else if (self->uart.Init.Parity == UART_PARITY_EVEN) {
|
||||
mp_print_str(print, "0");
|
||||
} else {
|
||||
mp_print_str(print, "1");
|
||||
}
|
||||
mp_printf(print, ", stop=%u, flow=",
|
||||
self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2);
|
||||
if (self->uart.Init.HwFlowCtl == UART_HWCONTROL_NONE) {
|
||||
mp_print_str(print, "0");
|
||||
} else {
|
||||
if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) {
|
||||
mp_print_str(print, "RTS");
|
||||
if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
|
||||
mp_print_str(print, "|");
|
||||
}
|
||||
}
|
||||
if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
|
||||
mp_print_str(print, "CTS");
|
||||
}
|
||||
}
|
||||
mp_printf(print, ", timeout=%u, timeout_char=%u, rxbuf=%u)",
|
||||
self->timeout, self->timeout_char,
|
||||
self->read_buf_len == 0 ? 0 : self->read_buf_len - 1); // -1 to adjust for usable length of buffer
|
||||
}
|
||||
}
|
||||
|
||||
/// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, flow=0, read_buf_len=64)
|
||||
///
|
||||
/// Initialise the UART bus with the given parameters:
|
||||
///
|
||||
/// - `baudrate` is the clock rate.
|
||||
/// - `bits` is the number of bits per byte, 7, 8 or 9.
|
||||
/// - `parity` is the parity, `None`, 0 (even) or 1 (odd).
|
||||
/// - `stop` is the number of stop bits, 1 or 2.
|
||||
/// - `timeout` is the timeout in milliseconds to wait for the first character.
|
||||
/// - `timeout_char` is the timeout in milliseconds to wait between characters.
|
||||
/// - `flow` is RTS | CTS where RTS == 256, CTS == 512
|
||||
/// - `read_buf_len` is the character length of the read buffer (0 to disable).
|
||||
STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
||||
static const mp_arg_t allowed_args[] = {
|
||||
{ MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} },
|
||||
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
|
||||
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
|
||||
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} },
|
||||
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} },
|
||||
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
|
||||
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
||||
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
||||
{ MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} }, // legacy
|
||||
};
|
||||
|
||||
// parse args
|
||||
struct {
|
||||
mp_arg_val_t baudrate, bits, parity, stop, flow, timeout, timeout_char, rxbuf, read_buf_len;
|
||||
} args;
|
||||
mp_arg_parse_all(n_args, pos_args, kw_args,
|
||||
MP_ARRAY_SIZE(allowed_args), allowed_args, (mp_arg_val_t*)&args);
|
||||
|
||||
// set the UART configuration values
|
||||
memset(&self->uart, 0, sizeof(self->uart));
|
||||
UART_InitTypeDef *init = &self->uart.Init;
|
||||
|
||||
// baudrate
|
||||
init->BaudRate = args.baudrate.u_int;
|
||||
|
||||
// parity
|
||||
mp_int_t bits = args.bits.u_int;
|
||||
if (args.parity.u_obj == mp_const_none) {
|
||||
init->Parity = UART_PARITY_NONE;
|
||||
} else {
|
||||
mp_int_t parity = mp_obj_get_int(args.parity.u_obj);
|
||||
init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN;
|
||||
bits += 1; // STs convention has bits including parity
|
||||
}
|
||||
|
||||
// number of bits
|
||||
if (bits == 8) {
|
||||
init->WordLength = UART_WORDLENGTH_8B;
|
||||
} else if (bits == 9) {
|
||||
init->WordLength = UART_WORDLENGTH_9B;
|
||||
#ifdef UART_WORDLENGTH_7B
|
||||
} else if (bits == 7) {
|
||||
init->WordLength = UART_WORDLENGTH_7B;
|
||||
#endif
|
||||
} else {
|
||||
mp_raise_ValueError("unsupported combination of bits and parity");
|
||||
}
|
||||
|
||||
// stop bits
|
||||
switch (args.stop.u_int) {
|
||||
case 1: init->StopBits = UART_STOPBITS_1; break;
|
||||
default: init->StopBits = UART_STOPBITS_2; break;
|
||||
}
|
||||
|
||||
// flow control
|
||||
init->HwFlowCtl = args.flow.u_int;
|
||||
|
||||
// extra config (not yet configurable)
|
||||
init->Mode = UART_MODE_TX_RX;
|
||||
init->OverSampling = UART_OVERSAMPLING_16;
|
||||
|
||||
// init UART (if it fails, it's because the port doesn't exist)
|
||||
if (!uart_init2(self)) {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", self->uart_id));
|
||||
}
|
||||
|
||||
// set timeout
|
||||
self->timeout = args.timeout.u_int;
|
||||
|
||||
// set timeout_char
|
||||
// make sure it is at least as long as a whole character (13 bits to be safe)
|
||||
// minimum value is 2ms because sys-tick has a resolution of only 1ms
|
||||
self->timeout_char = args.timeout_char.u_int;
|
||||
uint32_t min_timeout_char = 13000 / init->BaudRate + 2;
|
||||
if (self->timeout_char < min_timeout_char) {
|
||||
self->timeout_char = min_timeout_char;
|
||||
}
|
||||
|
||||
// setup the read buffer
|
||||
m_del(byte, self->read_buf, self->read_buf_len << self->char_width);
|
||||
if (init->WordLength == UART_WORDLENGTH_9B && init->Parity == UART_PARITY_NONE) {
|
||||
self->char_mask = 0x1ff;
|
||||
self->char_width = CHAR_WIDTH_9BIT;
|
||||
} else {
|
||||
if (init->WordLength == UART_WORDLENGTH_9B || init->Parity == UART_PARITY_NONE) {
|
||||
self->char_mask = 0xff;
|
||||
} else {
|
||||
self->char_mask = 0x7f;
|
||||
}
|
||||
self->char_width = CHAR_WIDTH_8BIT;
|
||||
}
|
||||
self->read_buf_head = 0;
|
||||
self->read_buf_tail = 0;
|
||||
if (args.rxbuf.u_int >= 0) {
|
||||
// rxbuf overrides legacy read_buf_len
|
||||
args.read_buf_len.u_int = args.rxbuf.u_int;
|
||||
}
|
||||
if (args.read_buf_len.u_int <= 0) {
|
||||
// no read buffer
|
||||
self->read_buf_len = 0;
|
||||
self->read_buf = NULL;
|
||||
HAL_NVIC_DisableIRQ(self->irqn);
|
||||
__HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE);
|
||||
} else {
|
||||
// read buffer using interrupts
|
||||
self->read_buf_len = args.read_buf_len.u_int + 1; // +1 to adjust for usable length of buffer
|
||||
self->read_buf = m_new(byte, self->read_buf_len << self->char_width);
|
||||
__HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE);
|
||||
NVIC_SetPriority(IRQn_NONNEG(self->irqn), IRQ_PRI_UART);
|
||||
HAL_NVIC_EnableIRQ(self->irqn);
|
||||
}
|
||||
|
||||
// compute actual baudrate that was configured
|
||||
// (this formula assumes UART_OVERSAMPLING_16)
|
||||
uint32_t actual_baudrate = 0;
|
||||
#if defined(STM32F0)
|
||||
actual_baudrate = HAL_RCC_GetPCLK1Freq();
|
||||
#elif defined(STM32F7) || defined(STM32H7)
|
||||
UART_ClockSourceTypeDef clocksource = UART_CLOCKSOURCE_UNDEFINED;
|
||||
UART_GETCLOCKSOURCE(&self->uart, clocksource);
|
||||
switch (clocksource) {
|
||||
#if defined(STM32H7)
|
||||
case UART_CLOCKSOURCE_D2PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
|
||||
case UART_CLOCKSOURCE_D3PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
|
||||
case UART_CLOCKSOURCE_D2PCLK2: actual_baudrate = HAL_RCC_GetPCLK2Freq(); break;
|
||||
#else
|
||||
case UART_CLOCKSOURCE_PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
|
||||
case UART_CLOCKSOURCE_PCLK2: actual_baudrate = HAL_RCC_GetPCLK2Freq(); break;
|
||||
case UART_CLOCKSOURCE_SYSCLK: actual_baudrate = HAL_RCC_GetSysClockFreq(); break;
|
||||
#endif
|
||||
#if defined(STM32H7)
|
||||
case UART_CLOCKSOURCE_CSI: actual_baudrate = CSI_VALUE; break;
|
||||
#endif
|
||||
case UART_CLOCKSOURCE_HSI: actual_baudrate = HSI_VALUE; break;
|
||||
case UART_CLOCKSOURCE_LSE: actual_baudrate = LSE_VALUE; break;
|
||||
#if defined(STM32H7)
|
||||
case UART_CLOCKSOURCE_PLL2:
|
||||
case UART_CLOCKSOURCE_PLL3:
|
||||
#endif
|
||||
case UART_CLOCKSOURCE_UNDEFINED: break;
|
||||
}
|
||||
#else
|
||||
if (self->uart.Instance == USART1
|
||||
#if defined(USART6)
|
||||
|| self->uart.Instance == USART6
|
||||
#endif
|
||||
) {
|
||||
actual_baudrate = HAL_RCC_GetPCLK2Freq();
|
||||
} else {
|
||||
actual_baudrate = HAL_RCC_GetPCLK1Freq();
|
||||
}
|
||||
#endif
|
||||
actual_baudrate /= self->uart.Instance->BRR;
|
||||
|
||||
// check we could set the baudrate within 5%
|
||||
uint32_t baudrate_diff;
|
||||
if (actual_baudrate > init->BaudRate) {
|
||||
baudrate_diff = actual_baudrate - init->BaudRate;
|
||||
} else {
|
||||
baudrate_diff = init->BaudRate - actual_baudrate;
|
||||
}
|
||||
init->BaudRate = actual_baudrate; // remember actual baudrate for printing
|
||||
if (20 * baudrate_diff > init->BaudRate) {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "set baudrate %d is not within 5%% of desired value", actual_baudrate));
|
||||
}
|
||||
|
||||
return mp_const_none;
|
||||
}
|
||||
|
||||
/// \classmethod \constructor(bus, ...)
|
||||
///
|
||||
/// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'.
|
||||
/// With no additional parameters, the UART object is created but not
|
||||
/// initialised (it has the settings from the last initialisation of
|
||||
/// the bus, if any). If extra arguments are given, the bus is initialised.
|
||||
/// See `init` for parameters of initialisation.
|
||||
///
|
||||
/// The physical pins of the UART busses are:
|
||||
///
|
||||
/// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)`
|
||||
/// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)`
|
||||
/// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)`
|
||||
/// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)`
|
||||
/// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)`
|
||||
STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
||||
// check arguments
|
||||
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
|
||||
|
||||
// work out port
|
||||
int uart_id = 0;
|
||||
if (MP_OBJ_IS_STR(args[0])) {
|
||||
const char *port = mp_obj_str_get_str(args[0]);
|
||||
if (0) {
|
||||
#ifdef MICROPY_HW_UART1_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART1_NAME) == 0) {
|
||||
uart_id = PYB_UART_1;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART2_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART2_NAME) == 0) {
|
||||
uart_id = PYB_UART_2;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART3_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART3_NAME) == 0) {
|
||||
uart_id = PYB_UART_3;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART4_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART4_NAME) == 0) {
|
||||
uart_id = PYB_UART_4;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART5_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART5_NAME) == 0) {
|
||||
uart_id = PYB_UART_5;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART6_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART6_NAME) == 0) {
|
||||
uart_id = PYB_UART_6;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART7_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART7_NAME) == 0) {
|
||||
uart_id = PYB_UART_7;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART8_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART8_NAME) == 0) {
|
||||
uart_id = PYB_UART_8;
|
||||
#endif
|
||||
} else {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) doesn't exist", port));
|
||||
}
|
||||
} else {
|
||||
uart_id = mp_obj_get_int(args[0]);
|
||||
if (!uart_exists(uart_id)) {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", uart_id));
|
||||
}
|
||||
}
|
||||
|
||||
pyb_uart_obj_t *self;
|
||||
if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) {
|
||||
// create new UART object
|
||||
self = m_new0(pyb_uart_obj_t, 1);
|
||||
self->base.type = &pyb_uart_type;
|
||||
self->uart_id = uart_id;
|
||||
MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self;
|
||||
} else {
|
||||
// reference existing UART object
|
||||
self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1];
|
||||
}
|
||||
|
||||
if (n_args > 1 || n_kw > 0) {
|
||||
// start the peripheral
|
||||
mp_map_t kw_args;
|
||||
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
|
||||
pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
|
||||
}
|
||||
|
||||
return MP_OBJ_FROM_PTR(self);
|
||||
}
|
||||
|
||||
STATIC mp_obj_t pyb_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
|
||||
return pyb_uart_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init);
|
||||
|
||||
/// \method deinit()
|
||||
/// Turn off the UART bus.
|
||||
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
uart_deinit(self);
|
||||
return mp_const_none;
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit);
|
||||
|
||||
/// \method any()
|
||||
/// Return `True` if any characters waiting, else `False`.
|
||||
STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
return MP_OBJ_NEW_SMALL_INT(uart_rx_any(self));
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);
|
||||
|
||||
/// \method writechar(char)
|
||||
/// Write a single character on the bus. `char` is an integer to write.
|
||||
/// Return value: `None`.
|
||||
STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
|
||||
// get the character to write (might be 9 bits)
|
||||
uint16_t data = mp_obj_get_int(char_in);
|
||||
|
||||
// write the character
|
||||
int errcode;
|
||||
if (uart_tx_wait(self, self->timeout)) {
|
||||
uart_tx_data(self, &data, 1, &errcode);
|
||||
} else {
|
||||
errcode = MP_ETIMEDOUT;
|
||||
}
|
||||
|
||||
if (errcode != 0) {
|
||||
mp_raise_OSError(errcode);
|
||||
}
|
||||
|
||||
return mp_const_none;
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar);
|
||||
|
||||
/// \method readchar()
|
||||
/// Receive a single character on the bus.
|
||||
/// Return value: The character read, as an integer. Returns -1 on timeout.
|
||||
STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
if (uart_rx_wait(self, self->timeout)) {
|
||||
return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self));
|
||||
} else {
|
||||
// return -1 on timeout
|
||||
return MP_OBJ_NEW_SMALL_INT(-1);
|
||||
}
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar);
|
||||
|
||||
// uart.sendbreak()
|
||||
STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
#if defined(STM32F0) || defined(STM32F7) || defined(STM32L4) || defined(STM32H7)
|
||||
self->uart.Instance->RQR = USART_RQR_SBKRQ; // write-only register
|
||||
#else
|
||||
self->uart.Instance->CR1 |= USART_CR1_SBK;
|
||||
#endif
|
||||
return mp_const_none;
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak);
|
||||
|
||||
STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = {
|
||||
// instance methods
|
||||
|
||||
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_uart_deinit_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_uart_any_obj) },
|
||||
|
||||
/// \method read([nbytes])
|
||||
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
|
||||
/// \method readline()
|
||||
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)},
|
||||
/// \method readinto(buf[, nbytes])
|
||||
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
|
||||
/// \method write(buf)
|
||||
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
|
||||
|
||||
{ MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&pyb_uart_writechar_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&pyb_uart_readchar_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&pyb_uart_sendbreak_obj) },
|
||||
|
||||
// class constants
|
||||
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) },
|
||||
};
|
||||
|
||||
STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);
|
||||
|
||||
STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
byte *buf = buf_in;
|
||||
|
||||
// check that size is a multiple of character width
|
||||
if (size & self->char_width) {
|
||||
*errcode = MP_EIO;
|
||||
return MP_STREAM_ERROR;
|
||||
}
|
||||
|
||||
// convert byte size to char size
|
||||
size >>= self->char_width;
|
||||
|
||||
// make sure we want at least 1 char
|
||||
if (size == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// wait for first char to become available
|
||||
if (!uart_rx_wait(self, self->timeout)) {
|
||||
// return EAGAIN error to indicate non-blocking (then read() method returns None)
|
||||
*errcode = MP_EAGAIN;
|
||||
return MP_STREAM_ERROR;
|
||||
}
|
||||
|
||||
// read the data
|
||||
byte *orig_buf = buf;
|
||||
for (;;) {
|
||||
int data = uart_rx_char(self);
|
||||
if (self->char_width == CHAR_WIDTH_9BIT) {
|
||||
*(uint16_t*)buf = data;
|
||||
buf += 2;
|
||||
} else {
|
||||
*buf++ = data;
|
||||
}
|
||||
if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) {
|
||||
// return number of bytes read
|
||||
return buf - orig_buf;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
const byte *buf = buf_in;
|
||||
|
||||
// check that size is a multiple of character width
|
||||
if (size & self->char_width) {
|
||||
*errcode = MP_EIO;
|
||||
return MP_STREAM_ERROR;
|
||||
}
|
||||
|
||||
// wait to be able to write the first character. EAGAIN causes write to return None
|
||||
if (!uart_tx_wait(self, self->timeout)) {
|
||||
*errcode = MP_EAGAIN;
|
||||
return MP_STREAM_ERROR;
|
||||
}
|
||||
|
||||
// write the data
|
||||
size_t num_tx = uart_tx_data(self, buf, size >> self->char_width, errcode);
|
||||
|
||||
if (*errcode == 0 || *errcode == MP_ETIMEDOUT) {
|
||||
// return number of bytes written, even if there was a timeout
|
||||
return num_tx << self->char_width;
|
||||
} else {
|
||||
return MP_STREAM_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
mp_uint_t ret;
|
||||
if (request == MP_STREAM_POLL) {
|
||||
uintptr_t flags = arg;
|
||||
ret = 0;
|
||||
if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self)) {
|
||||
ret |= MP_STREAM_POLL_RD;
|
||||
}
|
||||
if ((flags & MP_STREAM_POLL_WR) && __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) {
|
||||
ret |= MP_STREAM_POLL_WR;
|
||||
}
|
||||
} else {
|
||||
*errcode = MP_EINVAL;
|
||||
ret = MP_STREAM_ERROR;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
STATIC const mp_stream_p_t uart_stream_p = {
|
||||
.read = pyb_uart_read,
|
||||
.write = pyb_uart_write,
|
||||
.ioctl = pyb_uart_ioctl,
|
||||
.is_text = false,
|
||||
};
|
||||
|
||||
const mp_obj_type_t pyb_uart_type = {
|
||||
{ &mp_type_type },
|
||||
.name = MP_QSTR_UART,
|
||||
.print = pyb_uart_print,
|
||||
.make_new = pyb_uart_make_new,
|
||||
.getiter = mp_identity_getiter,
|
||||
.iternext = mp_stream_unbuffered_iter,
|
||||
.protocol = &uart_stream_p,
|
||||
.locals_dict = (mp_obj_dict_t*)&pyb_uart_locals_dict,
|
||||
};
|
@ -755,7 +755,7 @@ soft_reset_exit:
|
||||
mod_network_deinit();
|
||||
#endif
|
||||
timer_deinit();
|
||||
uart_deinit();
|
||||
uart_deinit_all();
|
||||
#if MICROPY_HW_ENABLE_CAN
|
||||
can_deinit();
|
||||
#endif
|
||||
|
@ -37,62 +37,6 @@
|
||||
#include "irq.h"
|
||||
#include "pendsv.h"
|
||||
|
||||
/// \moduleref pyb
|
||||
/// \class UART - duplex serial communication bus
|
||||
///
|
||||
/// UART implements the standard UART/USART duplex serial communications protocol. At
|
||||
/// the physical level it consists of 2 lines: RX and TX. The unit of communication
|
||||
/// is a character (not to be confused with a string character) which can be 8 or 9
|
||||
/// bits wide.
|
||||
///
|
||||
/// UART objects can be created and initialised using:
|
||||
///
|
||||
/// from pyb import UART
|
||||
///
|
||||
/// uart = UART(1, 9600) # init with given baudrate
|
||||
/// uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters
|
||||
///
|
||||
/// Bits can be 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2.
|
||||
///
|
||||
/// A UART object acts like a stream object and reading and writing is done
|
||||
/// using the standard stream methods:
|
||||
///
|
||||
/// uart.read(10) # read 10 characters, returns a bytes object
|
||||
/// uart.read() # read all available characters
|
||||
/// uart.readline() # read a line
|
||||
/// uart.readinto(buf) # read and store into the given buffer
|
||||
/// uart.write('abc') # write the 3 characters
|
||||
///
|
||||
/// Individual characters can be read/written using:
|
||||
///
|
||||
/// uart.readchar() # read 1 character and returns it as an integer
|
||||
/// uart.writechar(42) # write 1 character
|
||||
///
|
||||
/// To check if there is anything to be read, use:
|
||||
///
|
||||
/// uart.any() # returns True if any characters waiting
|
||||
|
||||
#define CHAR_WIDTH_8BIT (0)
|
||||
#define CHAR_WIDTH_9BIT (1)
|
||||
|
||||
struct _pyb_uart_obj_t {
|
||||
mp_obj_base_t base;
|
||||
UART_HandleTypeDef uart; // this is 17 words big
|
||||
IRQn_Type irqn;
|
||||
pyb_uart_t uart_id : 8;
|
||||
bool is_enabled : 1;
|
||||
bool attached_to_repl; // whether the UART is attached to REPL
|
||||
byte char_width; // 0 for 7,8 bit chars, 1 for 9 bit chars
|
||||
uint16_t char_mask; // 0x7f for 7 bit, 0xff for 8 bit, 0x1ff for 9 bit
|
||||
uint16_t timeout; // timeout waiting for first char
|
||||
uint16_t timeout_char; // timeout waiting between chars
|
||||
uint16_t read_buf_len; // len in chars; buf can hold len-1 chars
|
||||
volatile uint16_t read_buf_head; // indexes first empty slot
|
||||
uint16_t read_buf_tail; // indexes first full slot (not full if equals head)
|
||||
byte *read_buf; // byte or uint16_t, depending on char size
|
||||
};
|
||||
|
||||
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in);
|
||||
extern void NORETURN __fatal_error(const char *msg);
|
||||
|
||||
void uart_init0(void) {
|
||||
@ -119,16 +63,16 @@ void uart_init0(void) {
|
||||
}
|
||||
|
||||
// unregister all interrupt sources
|
||||
void uart_deinit(void) {
|
||||
void uart_deinit_all(void) {
|
||||
for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) {
|
||||
pyb_uart_obj_t *uart_obj = MP_STATE_PORT(pyb_uart_obj_all)[i];
|
||||
if (uart_obj != NULL) {
|
||||
pyb_uart_deinit(MP_OBJ_FROM_PTR(uart_obj));
|
||||
uart_deinit(uart_obj);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
STATIC bool uart_exists(int uart_id) {
|
||||
bool uart_exists(int uart_id) {
|
||||
if (uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all))) {
|
||||
// safeguard against pyb_uart_obj_all array being configured too small
|
||||
return false;
|
||||
@ -171,7 +115,7 @@ STATIC bool uart_exists(int uart_id) {
|
||||
}
|
||||
|
||||
// assumes Init parameters have been set up correctly
|
||||
STATIC bool uart_init2(pyb_uart_obj_t *uart_obj) {
|
||||
bool uart_init2(pyb_uart_obj_t *uart_obj) {
|
||||
USART_TypeDef *UARTx;
|
||||
IRQn_Type irqn;
|
||||
int uart_unit;
|
||||
@ -358,6 +302,91 @@ STATIC bool uart_init2(pyb_uart_obj_t *uart_obj) {
|
||||
return true;
|
||||
}
|
||||
|
||||
void uart_deinit(pyb_uart_obj_t *self) {
|
||||
self->is_enabled = false;
|
||||
UART_HandleTypeDef *uart = &self->uart;
|
||||
HAL_UART_DeInit(uart);
|
||||
if (uart->Instance == USART1) {
|
||||
HAL_NVIC_DisableIRQ(USART1_IRQn);
|
||||
__HAL_RCC_USART1_FORCE_RESET();
|
||||
__HAL_RCC_USART1_RELEASE_RESET();
|
||||
__HAL_RCC_USART1_CLK_DISABLE();
|
||||
} else if (uart->Instance == USART2) {
|
||||
HAL_NVIC_DisableIRQ(USART2_IRQn);
|
||||
__HAL_RCC_USART2_FORCE_RESET();
|
||||
__HAL_RCC_USART2_RELEASE_RESET();
|
||||
__HAL_RCC_USART2_CLK_DISABLE();
|
||||
#if defined(USART3)
|
||||
} else if (uart->Instance == USART3) {
|
||||
#if !defined(STM32F0)
|
||||
HAL_NVIC_DisableIRQ(USART3_IRQn);
|
||||
#endif
|
||||
__HAL_RCC_USART3_FORCE_RESET();
|
||||
__HAL_RCC_USART3_RELEASE_RESET();
|
||||
__HAL_RCC_USART3_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(UART4)
|
||||
} else if (uart->Instance == UART4) {
|
||||
HAL_NVIC_DisableIRQ(UART4_IRQn);
|
||||
__HAL_RCC_UART4_FORCE_RESET();
|
||||
__HAL_RCC_UART4_RELEASE_RESET();
|
||||
__HAL_RCC_UART4_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(USART4)
|
||||
} else if (uart->Instance == USART4) {
|
||||
__HAL_RCC_USART4_FORCE_RESET();
|
||||
__HAL_RCC_USART4_RELEASE_RESET();
|
||||
__HAL_RCC_USART4_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(UART5)
|
||||
} else if (uart->Instance == UART5) {
|
||||
HAL_NVIC_DisableIRQ(UART5_IRQn);
|
||||
__HAL_RCC_UART5_FORCE_RESET();
|
||||
__HAL_RCC_UART5_RELEASE_RESET();
|
||||
__HAL_RCC_UART5_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(USART5)
|
||||
} else if (uart->Instance == USART5) {
|
||||
__HAL_RCC_USART5_FORCE_RESET();
|
||||
__HAL_RCC_USART5_RELEASE_RESET();
|
||||
__HAL_RCC_USART5_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(UART6)
|
||||
} else if (uart->Instance == USART6) {
|
||||
HAL_NVIC_DisableIRQ(USART6_IRQn);
|
||||
__HAL_RCC_USART6_FORCE_RESET();
|
||||
__HAL_RCC_USART6_RELEASE_RESET();
|
||||
__HAL_RCC_USART6_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(UART7)
|
||||
} else if (uart->Instance == UART7) {
|
||||
HAL_NVIC_DisableIRQ(UART7_IRQn);
|
||||
__HAL_RCC_UART7_FORCE_RESET();
|
||||
__HAL_RCC_UART7_RELEASE_RESET();
|
||||
__HAL_RCC_UART7_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(USART7)
|
||||
} else if (uart->Instance == USART7) {
|
||||
__HAL_RCC_USART7_FORCE_RESET();
|
||||
__HAL_RCC_USART7_RELEASE_RESET();
|
||||
__HAL_RCC_USART7_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(UART8)
|
||||
} else if (uart->Instance == UART8) {
|
||||
HAL_NVIC_DisableIRQ(UART8_IRQn);
|
||||
__HAL_RCC_UART8_FORCE_RESET();
|
||||
__HAL_RCC_UART8_RELEASE_RESET();
|
||||
__HAL_RCC_UART8_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(USART8)
|
||||
} else if (uart->Instance == USART8) {
|
||||
__HAL_RCC_USART8_FORCE_RESET();
|
||||
__HAL_RCC_USART8_RELEASE_RESET();
|
||||
__HAL_RCC_USART8_CLK_DISABLE();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void uart_attach_to_repl(pyb_uart_obj_t *self, bool attached) {
|
||||
self->attached_to_repl = attached;
|
||||
}
|
||||
@ -391,7 +420,7 @@ mp_uint_t uart_rx_any(pyb_uart_obj_t *self) {
|
||||
// Waits at most timeout milliseconds for at least 1 char to become ready for
|
||||
// reading (from buf or for direct reading).
|
||||
// Returns true if something available, false if not.
|
||||
STATIC bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) {
|
||||
bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) {
|
||||
uint32_t start = HAL_GetTick();
|
||||
for (;;) {
|
||||
if (self->read_buf_tail != self->read_buf_head || __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) {
|
||||
@ -432,7 +461,7 @@ int uart_rx_char(pyb_uart_obj_t *self) {
|
||||
|
||||
// Waits at most timeout milliseconds for TX register to become empty.
|
||||
// Returns true if can write, false if can't.
|
||||
STATIC bool uart_tx_wait(pyb_uart_obj_t *self, uint32_t timeout) {
|
||||
bool uart_tx_wait(pyb_uart_obj_t *self, uint32_t timeout) {
|
||||
uint32_t start = HAL_GetTick();
|
||||
for (;;) {
|
||||
if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) {
|
||||
@ -465,7 +494,7 @@ STATIC bool uart_wait_flag_set(pyb_uart_obj_t *self, uint32_t flag, uint32_t tim
|
||||
// num_chars - number of characters to send (9-bit chars count for 2 bytes from src)
|
||||
// *errcode - returns 0 for success, MP_Exxx on error
|
||||
// returns the number of characters sent (valid even if there was an error)
|
||||
STATIC size_t uart_tx_data(pyb_uart_obj_t *self, const void *src_in, size_t num_chars, int *errcode) {
|
||||
size_t uart_tx_data(pyb_uart_obj_t *self, const void *src_in, size_t num_chars, int *errcode) {
|
||||
if (num_chars == 0) {
|
||||
*errcode = 0;
|
||||
return 0;
|
||||
@ -563,610 +592,3 @@ void uart_irq_handler(mp_uint_t uart_id) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
/* MicroPython bindings */
|
||||
|
||||
STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
if (!self->is_enabled) {
|
||||
mp_printf(print, "UART(%u)", self->uart_id);
|
||||
} else {
|
||||
mp_int_t bits;
|
||||
switch (self->uart.Init.WordLength) {
|
||||
#ifdef UART_WORDLENGTH_7B
|
||||
case UART_WORDLENGTH_7B: bits = 7; break;
|
||||
#endif
|
||||
case UART_WORDLENGTH_8B: bits = 8; break;
|
||||
case UART_WORDLENGTH_9B: default: bits = 9; break;
|
||||
}
|
||||
if (self->uart.Init.Parity != UART_PARITY_NONE) {
|
||||
bits -= 1;
|
||||
}
|
||||
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=",
|
||||
self->uart_id, self->uart.Init.BaudRate, bits);
|
||||
if (self->uart.Init.Parity == UART_PARITY_NONE) {
|
||||
mp_print_str(print, "None");
|
||||
} else if (self->uart.Init.Parity == UART_PARITY_EVEN) {
|
||||
mp_print_str(print, "0");
|
||||
} else {
|
||||
mp_print_str(print, "1");
|
||||
}
|
||||
mp_printf(print, ", stop=%u, flow=",
|
||||
self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2);
|
||||
if (self->uart.Init.HwFlowCtl == UART_HWCONTROL_NONE) {
|
||||
mp_print_str(print, "0");
|
||||
} else {
|
||||
if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) {
|
||||
mp_print_str(print, "RTS");
|
||||
if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
|
||||
mp_print_str(print, "|");
|
||||
}
|
||||
}
|
||||
if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
|
||||
mp_print_str(print, "CTS");
|
||||
}
|
||||
}
|
||||
mp_printf(print, ", timeout=%u, timeout_char=%u, rxbuf=%u)",
|
||||
self->timeout, self->timeout_char,
|
||||
self->read_buf_len == 0 ? 0 : self->read_buf_len - 1); // -1 to adjust for usable length of buffer
|
||||
}
|
||||
}
|
||||
|
||||
/// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, flow=0, read_buf_len=64)
|
||||
///
|
||||
/// Initialise the UART bus with the given parameters:
|
||||
///
|
||||
/// - `baudrate` is the clock rate.
|
||||
/// - `bits` is the number of bits per byte, 7, 8 or 9.
|
||||
/// - `parity` is the parity, `None`, 0 (even) or 1 (odd).
|
||||
/// - `stop` is the number of stop bits, 1 or 2.
|
||||
/// - `timeout` is the timeout in milliseconds to wait for the first character.
|
||||
/// - `timeout_char` is the timeout in milliseconds to wait between characters.
|
||||
/// - `flow` is RTS | CTS where RTS == 256, CTS == 512
|
||||
/// - `read_buf_len` is the character length of the read buffer (0 to disable).
|
||||
STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
||||
static const mp_arg_t allowed_args[] = {
|
||||
{ MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} },
|
||||
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
|
||||
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
|
||||
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} },
|
||||
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} },
|
||||
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
|
||||
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
|
||||
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
||||
{ MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} }, // legacy
|
||||
};
|
||||
|
||||
// parse args
|
||||
struct {
|
||||
mp_arg_val_t baudrate, bits, parity, stop, flow, timeout, timeout_char, rxbuf, read_buf_len;
|
||||
} args;
|
||||
mp_arg_parse_all(n_args, pos_args, kw_args,
|
||||
MP_ARRAY_SIZE(allowed_args), allowed_args, (mp_arg_val_t*)&args);
|
||||
|
||||
// set the UART configuration values
|
||||
memset(&self->uart, 0, sizeof(self->uart));
|
||||
UART_InitTypeDef *init = &self->uart.Init;
|
||||
|
||||
// baudrate
|
||||
init->BaudRate = args.baudrate.u_int;
|
||||
|
||||
// parity
|
||||
mp_int_t bits = args.bits.u_int;
|
||||
if (args.parity.u_obj == mp_const_none) {
|
||||
init->Parity = UART_PARITY_NONE;
|
||||
} else {
|
||||
mp_int_t parity = mp_obj_get_int(args.parity.u_obj);
|
||||
init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN;
|
||||
bits += 1; // STs convention has bits including parity
|
||||
}
|
||||
|
||||
// number of bits
|
||||
if (bits == 8) {
|
||||
init->WordLength = UART_WORDLENGTH_8B;
|
||||
} else if (bits == 9) {
|
||||
init->WordLength = UART_WORDLENGTH_9B;
|
||||
#ifdef UART_WORDLENGTH_7B
|
||||
} else if (bits == 7) {
|
||||
init->WordLength = UART_WORDLENGTH_7B;
|
||||
#endif
|
||||
} else {
|
||||
mp_raise_ValueError("unsupported combination of bits and parity");
|
||||
}
|
||||
|
||||
// stop bits
|
||||
switch (args.stop.u_int) {
|
||||
case 1: init->StopBits = UART_STOPBITS_1; break;
|
||||
default: init->StopBits = UART_STOPBITS_2; break;
|
||||
}
|
||||
|
||||
// flow control
|
||||
init->HwFlowCtl = args.flow.u_int;
|
||||
|
||||
// extra config (not yet configurable)
|
||||
init->Mode = UART_MODE_TX_RX;
|
||||
init->OverSampling = UART_OVERSAMPLING_16;
|
||||
|
||||
// init UART (if it fails, it's because the port doesn't exist)
|
||||
if (!uart_init2(self)) {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", self->uart_id));
|
||||
}
|
||||
|
||||
// set timeout
|
||||
self->timeout = args.timeout.u_int;
|
||||
|
||||
// set timeout_char
|
||||
// make sure it is at least as long as a whole character (13 bits to be safe)
|
||||
// minimum value is 2ms because sys-tick has a resolution of only 1ms
|
||||
self->timeout_char = args.timeout_char.u_int;
|
||||
uint32_t min_timeout_char = 13000 / init->BaudRate + 2;
|
||||
if (self->timeout_char < min_timeout_char) {
|
||||
self->timeout_char = min_timeout_char;
|
||||
}
|
||||
|
||||
// setup the read buffer
|
||||
m_del(byte, self->read_buf, self->read_buf_len << self->char_width);
|
||||
if (init->WordLength == UART_WORDLENGTH_9B && init->Parity == UART_PARITY_NONE) {
|
||||
self->char_mask = 0x1ff;
|
||||
self->char_width = CHAR_WIDTH_9BIT;
|
||||
} else {
|
||||
if (init->WordLength == UART_WORDLENGTH_9B || init->Parity == UART_PARITY_NONE) {
|
||||
self->char_mask = 0xff;
|
||||
} else {
|
||||
self->char_mask = 0x7f;
|
||||
}
|
||||
self->char_width = CHAR_WIDTH_8BIT;
|
||||
}
|
||||
self->read_buf_head = 0;
|
||||
self->read_buf_tail = 0;
|
||||
if (args.rxbuf.u_int >= 0) {
|
||||
// rxbuf overrides legacy read_buf_len
|
||||
args.read_buf_len.u_int = args.rxbuf.u_int;
|
||||
}
|
||||
if (args.read_buf_len.u_int <= 0) {
|
||||
// no read buffer
|
||||
self->read_buf_len = 0;
|
||||
self->read_buf = NULL;
|
||||
HAL_NVIC_DisableIRQ(self->irqn);
|
||||
__HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE);
|
||||
} else {
|
||||
// read buffer using interrupts
|
||||
self->read_buf_len = args.read_buf_len.u_int + 1; // +1 to adjust for usable length of buffer
|
||||
self->read_buf = m_new(byte, self->read_buf_len << self->char_width);
|
||||
__HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE);
|
||||
NVIC_SetPriority(IRQn_NONNEG(self->irqn), IRQ_PRI_UART);
|
||||
HAL_NVIC_EnableIRQ(self->irqn);
|
||||
}
|
||||
|
||||
// compute actual baudrate that was configured
|
||||
// (this formula assumes UART_OVERSAMPLING_16)
|
||||
uint32_t actual_baudrate = 0;
|
||||
#if defined(STM32F0)
|
||||
actual_baudrate = HAL_RCC_GetPCLK1Freq();
|
||||
#elif defined(STM32F7) || defined(STM32H7)
|
||||
UART_ClockSourceTypeDef clocksource = UART_CLOCKSOURCE_UNDEFINED;
|
||||
UART_GETCLOCKSOURCE(&self->uart, clocksource);
|
||||
switch (clocksource) {
|
||||
#if defined(STM32H7)
|
||||
case UART_CLOCKSOURCE_D2PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
|
||||
case UART_CLOCKSOURCE_D3PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
|
||||
case UART_CLOCKSOURCE_D2PCLK2: actual_baudrate = HAL_RCC_GetPCLK2Freq(); break;
|
||||
#else
|
||||
case UART_CLOCKSOURCE_PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
|
||||
case UART_CLOCKSOURCE_PCLK2: actual_baudrate = HAL_RCC_GetPCLK2Freq(); break;
|
||||
case UART_CLOCKSOURCE_SYSCLK: actual_baudrate = HAL_RCC_GetSysClockFreq(); break;
|
||||
#endif
|
||||
#if defined(STM32H7)
|
||||
case UART_CLOCKSOURCE_CSI: actual_baudrate = CSI_VALUE; break;
|
||||
#endif
|
||||
case UART_CLOCKSOURCE_HSI: actual_baudrate = HSI_VALUE; break;
|
||||
case UART_CLOCKSOURCE_LSE: actual_baudrate = LSE_VALUE; break;
|
||||
#if defined(STM32H7)
|
||||
case UART_CLOCKSOURCE_PLL2:
|
||||
case UART_CLOCKSOURCE_PLL3:
|
||||
#endif
|
||||
case UART_CLOCKSOURCE_UNDEFINED: break;
|
||||
}
|
||||
#else
|
||||
if (self->uart.Instance == USART1
|
||||
#if defined(USART6)
|
||||
|| self->uart.Instance == USART6
|
||||
#endif
|
||||
) {
|
||||
actual_baudrate = HAL_RCC_GetPCLK2Freq();
|
||||
} else {
|
||||
actual_baudrate = HAL_RCC_GetPCLK1Freq();
|
||||
}
|
||||
#endif
|
||||
actual_baudrate /= self->uart.Instance->BRR;
|
||||
|
||||
// check we could set the baudrate within 5%
|
||||
uint32_t baudrate_diff;
|
||||
if (actual_baudrate > init->BaudRate) {
|
||||
baudrate_diff = actual_baudrate - init->BaudRate;
|
||||
} else {
|
||||
baudrate_diff = init->BaudRate - actual_baudrate;
|
||||
}
|
||||
init->BaudRate = actual_baudrate; // remember actual baudrate for printing
|
||||
if (20 * baudrate_diff > init->BaudRate) {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "set baudrate %d is not within 5%% of desired value", actual_baudrate));
|
||||
}
|
||||
|
||||
return mp_const_none;
|
||||
}
|
||||
|
||||
/// \classmethod \constructor(bus, ...)
|
||||
///
|
||||
/// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'.
|
||||
/// With no additional parameters, the UART object is created but not
|
||||
/// initialised (it has the settings from the last initialisation of
|
||||
/// the bus, if any). If extra arguments are given, the bus is initialised.
|
||||
/// See `init` for parameters of initialisation.
|
||||
///
|
||||
/// The physical pins of the UART busses are:
|
||||
///
|
||||
/// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)`
|
||||
/// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)`
|
||||
/// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)`
|
||||
/// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)`
|
||||
/// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)`
|
||||
STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
||||
// check arguments
|
||||
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
|
||||
|
||||
// work out port
|
||||
int uart_id = 0;
|
||||
if (MP_OBJ_IS_STR(args[0])) {
|
||||
const char *port = mp_obj_str_get_str(args[0]);
|
||||
if (0) {
|
||||
#ifdef MICROPY_HW_UART1_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART1_NAME) == 0) {
|
||||
uart_id = PYB_UART_1;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART2_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART2_NAME) == 0) {
|
||||
uart_id = PYB_UART_2;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART3_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART3_NAME) == 0) {
|
||||
uart_id = PYB_UART_3;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART4_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART4_NAME) == 0) {
|
||||
uart_id = PYB_UART_4;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART5_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART5_NAME) == 0) {
|
||||
uart_id = PYB_UART_5;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART6_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART6_NAME) == 0) {
|
||||
uart_id = PYB_UART_6;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART7_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART7_NAME) == 0) {
|
||||
uart_id = PYB_UART_7;
|
||||
#endif
|
||||
#ifdef MICROPY_HW_UART8_NAME
|
||||
} else if (strcmp(port, MICROPY_HW_UART8_NAME) == 0) {
|
||||
uart_id = PYB_UART_8;
|
||||
#endif
|
||||
} else {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) doesn't exist", port));
|
||||
}
|
||||
} else {
|
||||
uart_id = mp_obj_get_int(args[0]);
|
||||
if (!uart_exists(uart_id)) {
|
||||
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", uart_id));
|
||||
}
|
||||
}
|
||||
|
||||
pyb_uart_obj_t *self;
|
||||
if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) {
|
||||
// create new UART object
|
||||
self = m_new0(pyb_uart_obj_t, 1);
|
||||
self->base.type = &pyb_uart_type;
|
||||
self->uart_id = uart_id;
|
||||
MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self;
|
||||
} else {
|
||||
// reference existing UART object
|
||||
self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1];
|
||||
}
|
||||
|
||||
if (n_args > 1 || n_kw > 0) {
|
||||
// start the peripheral
|
||||
mp_map_t kw_args;
|
||||
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
|
||||
pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
|
||||
}
|
||||
|
||||
return MP_OBJ_FROM_PTR(self);
|
||||
}
|
||||
|
||||
STATIC mp_obj_t pyb_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
|
||||
return pyb_uart_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init);
|
||||
|
||||
/// \method deinit()
|
||||
/// Turn off the UART bus.
|
||||
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
self->is_enabled = false;
|
||||
UART_HandleTypeDef *uart = &self->uart;
|
||||
HAL_UART_DeInit(uart);
|
||||
if (uart->Instance == USART1) {
|
||||
HAL_NVIC_DisableIRQ(USART1_IRQn);
|
||||
__HAL_RCC_USART1_FORCE_RESET();
|
||||
__HAL_RCC_USART1_RELEASE_RESET();
|
||||
__HAL_RCC_USART1_CLK_DISABLE();
|
||||
} else if (uart->Instance == USART2) {
|
||||
HAL_NVIC_DisableIRQ(USART2_IRQn);
|
||||
__HAL_RCC_USART2_FORCE_RESET();
|
||||
__HAL_RCC_USART2_RELEASE_RESET();
|
||||
__HAL_RCC_USART2_CLK_DISABLE();
|
||||
#if defined(USART3)
|
||||
} else if (uart->Instance == USART3) {
|
||||
#if !defined(STM32F0)
|
||||
HAL_NVIC_DisableIRQ(USART3_IRQn);
|
||||
#endif
|
||||
__HAL_RCC_USART3_FORCE_RESET();
|
||||
__HAL_RCC_USART3_RELEASE_RESET();
|
||||
__HAL_RCC_USART3_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(UART4)
|
||||
} else if (uart->Instance == UART4) {
|
||||
HAL_NVIC_DisableIRQ(UART4_IRQn);
|
||||
__HAL_RCC_UART4_FORCE_RESET();
|
||||
__HAL_RCC_UART4_RELEASE_RESET();
|
||||
__HAL_RCC_UART4_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(USART4)
|
||||
} else if (uart->Instance == USART4) {
|
||||
__HAL_RCC_USART4_FORCE_RESET();
|
||||
__HAL_RCC_USART4_RELEASE_RESET();
|
||||
__HAL_RCC_USART4_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(UART5)
|
||||
} else if (uart->Instance == UART5) {
|
||||
HAL_NVIC_DisableIRQ(UART5_IRQn);
|
||||
__HAL_RCC_UART5_FORCE_RESET();
|
||||
__HAL_RCC_UART5_RELEASE_RESET();
|
||||
__HAL_RCC_UART5_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(USART5)
|
||||
} else if (uart->Instance == USART5) {
|
||||
__HAL_RCC_USART5_FORCE_RESET();
|
||||
__HAL_RCC_USART5_RELEASE_RESET();
|
||||
__HAL_RCC_USART5_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(UART6)
|
||||
} else if (uart->Instance == USART6) {
|
||||
HAL_NVIC_DisableIRQ(USART6_IRQn);
|
||||
__HAL_RCC_USART6_FORCE_RESET();
|
||||
__HAL_RCC_USART6_RELEASE_RESET();
|
||||
__HAL_RCC_USART6_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(UART7)
|
||||
} else if (uart->Instance == UART7) {
|
||||
HAL_NVIC_DisableIRQ(UART7_IRQn);
|
||||
__HAL_RCC_UART7_FORCE_RESET();
|
||||
__HAL_RCC_UART7_RELEASE_RESET();
|
||||
__HAL_RCC_UART7_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(USART7)
|
||||
} else if (uart->Instance == USART7) {
|
||||
__HAL_RCC_USART7_FORCE_RESET();
|
||||
__HAL_RCC_USART7_RELEASE_RESET();
|
||||
__HAL_RCC_USART7_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(UART8)
|
||||
} else if (uart->Instance == UART8) {
|
||||
HAL_NVIC_DisableIRQ(UART8_IRQn);
|
||||
__HAL_RCC_UART8_FORCE_RESET();
|
||||
__HAL_RCC_UART8_RELEASE_RESET();
|
||||
__HAL_RCC_UART8_CLK_DISABLE();
|
||||
#endif
|
||||
#if defined(USART8)
|
||||
} else if (uart->Instance == USART8) {
|
||||
__HAL_RCC_USART8_FORCE_RESET();
|
||||
__HAL_RCC_USART8_RELEASE_RESET();
|
||||
__HAL_RCC_USART8_CLK_DISABLE();
|
||||
#endif
|
||||
}
|
||||
return mp_const_none;
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit);
|
||||
|
||||
/// \method any()
|
||||
/// Return `True` if any characters waiting, else `False`.
|
||||
STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
return MP_OBJ_NEW_SMALL_INT(uart_rx_any(self));
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);
|
||||
|
||||
/// \method writechar(char)
|
||||
/// Write a single character on the bus. `char` is an integer to write.
|
||||
/// Return value: `None`.
|
||||
STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
|
||||
// get the character to write (might be 9 bits)
|
||||
uint16_t data = mp_obj_get_int(char_in);
|
||||
|
||||
// write the character
|
||||
int errcode;
|
||||
if (uart_tx_wait(self, self->timeout)) {
|
||||
uart_tx_data(self, &data, 1, &errcode);
|
||||
} else {
|
||||
errcode = MP_ETIMEDOUT;
|
||||
}
|
||||
|
||||
if (errcode != 0) {
|
||||
mp_raise_OSError(errcode);
|
||||
}
|
||||
|
||||
return mp_const_none;
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar);
|
||||
|
||||
/// \method readchar()
|
||||
/// Receive a single character on the bus.
|
||||
/// Return value: The character read, as an integer. Returns -1 on timeout.
|
||||
STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
if (uart_rx_wait(self, self->timeout)) {
|
||||
return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self));
|
||||
} else {
|
||||
// return -1 on timeout
|
||||
return MP_OBJ_NEW_SMALL_INT(-1);
|
||||
}
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar);
|
||||
|
||||
// uart.sendbreak()
|
||||
STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
#if defined(STM32F0) || defined(STM32F7) || defined(STM32L4) || defined(STM32H7)
|
||||
self->uart.Instance->RQR = USART_RQR_SBKRQ; // write-only register
|
||||
#else
|
||||
self->uart.Instance->CR1 |= USART_CR1_SBK;
|
||||
#endif
|
||||
return mp_const_none;
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak);
|
||||
|
||||
STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = {
|
||||
// instance methods
|
||||
|
||||
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_uart_deinit_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_uart_any_obj) },
|
||||
|
||||
/// \method read([nbytes])
|
||||
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
|
||||
/// \method readline()
|
||||
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)},
|
||||
/// \method readinto(buf[, nbytes])
|
||||
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
|
||||
/// \method write(buf)
|
||||
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
|
||||
|
||||
{ MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&pyb_uart_writechar_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&pyb_uart_readchar_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&pyb_uart_sendbreak_obj) },
|
||||
|
||||
// class constants
|
||||
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) },
|
||||
};
|
||||
|
||||
STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);
|
||||
|
||||
STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
byte *buf = buf_in;
|
||||
|
||||
// check that size is a multiple of character width
|
||||
if (size & self->char_width) {
|
||||
*errcode = MP_EIO;
|
||||
return MP_STREAM_ERROR;
|
||||
}
|
||||
|
||||
// convert byte size to char size
|
||||
size >>= self->char_width;
|
||||
|
||||
// make sure we want at least 1 char
|
||||
if (size == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// wait for first char to become available
|
||||
if (!uart_rx_wait(self, self->timeout)) {
|
||||
// return EAGAIN error to indicate non-blocking (then read() method returns None)
|
||||
*errcode = MP_EAGAIN;
|
||||
return MP_STREAM_ERROR;
|
||||
}
|
||||
|
||||
// read the data
|
||||
byte *orig_buf = buf;
|
||||
for (;;) {
|
||||
int data = uart_rx_char(self);
|
||||
if (self->char_width == CHAR_WIDTH_9BIT) {
|
||||
*(uint16_t*)buf = data;
|
||||
buf += 2;
|
||||
} else {
|
||||
*buf++ = data;
|
||||
}
|
||||
if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) {
|
||||
// return number of bytes read
|
||||
return buf - orig_buf;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
const byte *buf = buf_in;
|
||||
|
||||
// check that size is a multiple of character width
|
||||
if (size & self->char_width) {
|
||||
*errcode = MP_EIO;
|
||||
return MP_STREAM_ERROR;
|
||||
}
|
||||
|
||||
// wait to be able to write the first character. EAGAIN causes write to return None
|
||||
if (!uart_tx_wait(self, self->timeout)) {
|
||||
*errcode = MP_EAGAIN;
|
||||
return MP_STREAM_ERROR;
|
||||
}
|
||||
|
||||
// write the data
|
||||
size_t num_tx = uart_tx_data(self, buf, size >> self->char_width, errcode);
|
||||
|
||||
if (*errcode == 0 || *errcode == MP_ETIMEDOUT) {
|
||||
// return number of bytes written, even if there was a timeout
|
||||
return num_tx << self->char_width;
|
||||
} else {
|
||||
return MP_STREAM_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
|
||||
pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
mp_uint_t ret;
|
||||
if (request == MP_STREAM_POLL) {
|
||||
uintptr_t flags = arg;
|
||||
ret = 0;
|
||||
if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self)) {
|
||||
ret |= MP_STREAM_POLL_RD;
|
||||
}
|
||||
if ((flags & MP_STREAM_POLL_WR) && __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) {
|
||||
ret |= MP_STREAM_POLL_WR;
|
||||
}
|
||||
} else {
|
||||
*errcode = MP_EINVAL;
|
||||
ret = MP_STREAM_ERROR;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
STATIC const mp_stream_p_t uart_stream_p = {
|
||||
.read = pyb_uart_read,
|
||||
.write = pyb_uart_write,
|
||||
.ioctl = pyb_uart_ioctl,
|
||||
.is_text = false,
|
||||
};
|
||||
|
||||
const mp_obj_type_t pyb_uart_type = {
|
||||
{ &mp_type_type },
|
||||
.name = MP_QSTR_UART,
|
||||
.print = pyb_uart_print,
|
||||
.make_new = pyb_uart_make_new,
|
||||
.getiter = mp_identity_getiter,
|
||||
.iternext = mp_stream_unbuffered_iter,
|
||||
.protocol = &uart_stream_p,
|
||||
.locals_dict = (mp_obj_dict_t*)&pyb_uart_locals_dict,
|
||||
};
|
||||
|
@ -38,16 +38,41 @@ typedef enum {
|
||||
PYB_UART_8 = 8,
|
||||
} pyb_uart_t;
|
||||
|
||||
typedef struct _pyb_uart_obj_t pyb_uart_obj_t;
|
||||
#define CHAR_WIDTH_8BIT (0)
|
||||
#define CHAR_WIDTH_9BIT (1)
|
||||
|
||||
typedef struct _pyb_uart_obj_t {
|
||||
mp_obj_base_t base;
|
||||
UART_HandleTypeDef uart; // this is 17 words big
|
||||
IRQn_Type irqn;
|
||||
pyb_uart_t uart_id : 8;
|
||||
bool is_enabled : 1;
|
||||
bool attached_to_repl; // whether the UART is attached to REPL
|
||||
byte char_width; // 0 for 7,8 bit chars, 1 for 9 bit chars
|
||||
uint16_t char_mask; // 0x7f for 7 bit, 0xff for 8 bit, 0x1ff for 9 bit
|
||||
uint16_t timeout; // timeout waiting for first char
|
||||
uint16_t timeout_char; // timeout waiting between chars
|
||||
uint16_t read_buf_len; // len in chars; buf can hold len-1 chars
|
||||
volatile uint16_t read_buf_head; // indexes first empty slot
|
||||
uint16_t read_buf_tail; // indexes first full slot (not full if equals head)
|
||||
byte *read_buf; // byte or uint16_t, depending on char size
|
||||
} pyb_uart_obj_t;
|
||||
|
||||
extern const mp_obj_type_t pyb_uart_type;
|
||||
|
||||
void uart_init0(void);
|
||||
void uart_deinit(void);
|
||||
void uart_deinit_all(void);
|
||||
bool uart_exists(int uart_id);
|
||||
bool uart_init2(pyb_uart_obj_t *uart_obj);
|
||||
void uart_deinit(pyb_uart_obj_t *uart_obj);
|
||||
void uart_irq_handler(mp_uint_t uart_id);
|
||||
|
||||
void uart_attach_to_repl(pyb_uart_obj_t *self, bool attached);
|
||||
mp_uint_t uart_rx_any(pyb_uart_obj_t *uart_obj);
|
||||
bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout);
|
||||
int uart_rx_char(pyb_uart_obj_t *uart_obj);
|
||||
bool uart_tx_wait(pyb_uart_obj_t *self, uint32_t timeout);
|
||||
size_t uart_tx_data(pyb_uart_obj_t *self, const void *src_in, size_t num_chars, int *errcode);
|
||||
void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len);
|
||||
|
||||
#endif // MICROPY_INCLUDED_STM32_UART_H
|
||||
|
Loading…
x
Reference in New Issue
Block a user