This is almost, but not entirely, a whitespace change.
"..." was missing or mis-placed in several places
The invalid syntax 'def f(self, ):' was used in several places.
This pulls all common functionality into `shared-bindings` and keeps
platform-specific code inside `nrf`. Additionally, this performs most
validation in the `shared-bindings` site.
The only validation that occurs inside platform-specific `common-hal`
code is related to timeout limits that are platform-specific.
Additionally, all documentation is now inside the `shared-bindings`
directory.
Signed-off-by: Sean Cross <sean@xobs.io>
With this patch, the exception can now be caught:
import microcontroller
import watchdog
import time
wdt = microcontroller.watchdog
wdt.timeout = 5
while True:
wdt.mode = watchdog.WatchDogMode.RAISE
print("Starting loop -- should exit after five seconds")
try:
while True:
time.sleep(10)
# pass # This also works for a spinloop
except watchdog.WatchDogTimeout as e:
print("Watchdog Expired (PASS)")
except Exception as e:
print("Other exception (FAIL)")
print("Exited loop")
This prints:
Starting loop -- should exit after five seconds
Watchdog Expired (PASS)
Starting loop -- should exit after five seconds
Watchdog Expired (PASS)
Starting loop -- should exit after five seconds
Watchdog Expired (PASS)
Signed-off-by: Sean Cross <sean@xobs.io>
When handling negative steps, start and stop need to be mp_int_t so they
can be checked against a potential negative value during the for loop
used to set the slice values.
Add a field to allow specifying a timeout when initiating advertising.
As part of this, add a new property to determine if the device is still
advertising.
Additionally, have the `anonymous` property require a timeout, and set
the timeout to the maximum possible value if no timeout is specified.
Signed-off-by: Sean Cross <sean@xobs.io>
Add a new parameter to the `start_advertising()` function to enable
anonymous advertising. This forces a call to `sd_ble_gap_privacy_set()`
with `privacy_mode` set to `BLE_GAP_PRIVACY_MODE_DEVICE_PRIVACY` and
`private_addr_type` set to
`BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE`.
With this, addresses will cycle at a predefined rate (currently once
every 15 minutes).
Signed-off-by: Sean Cross <sean@xobs.io>
This change takes polygon from 126k pixels per second fill to 240k pps fill
on a reference 5 point star 50x66px polygon, updating both location and shape
at 10hz. Tested on an m4 express feather.
As a curiosity, the flat-out fill rate of a shape whose get_pixel is `return 0;`
fills just shy of 375k pixels per second.
When calling `AES.decrypt_into()` or `AES.encrypt_into()`, the
destination buffers may be any buffer kind. However, we currently
aren't checking to make sure the destination buffer is actually
writable.
Specify `MP_BUFFER_WRITE` for the destination buffers of both of these
objects so we don't inadvertently write to immutable data.
Signed-off-by: Sean Cross <sean@xobs.io>
In order to accept both `bytes` objects and `bytearray` objects, use a
`bufinfo` construct to retrieve the data rather than
`mp_obj_str_get_data()`.
Signed-off-by: Sean Cross <sean@xobs.io>
Ujson should only worry about whitespace before JSON. This becomes apparent when you are using MP stream protocol to read directly from input buffers.
When you attempt to read(1) on a UART (and possibly other protocols) you have to wait for either the byte or the timeout.
Fixes:
- Waiting for a timeout after you have completed reading a correct and complete JSON off the input.
- Raising an OSError after reading a correct and complete JSON off the input.
- Eating more data than semantically owned off the input buffer.
- Blocking to start parsing JSON until the entire JSON body has been loaded into a potentially large, contiguous Python object.
Code you would write before:
```
line = board_busio_uart_port.read_line()
json_dict = json.loads(line)
```
or reaching for fixed buffers and swapping them around in Python.
Code that did not work before that does now:
```
json_dict = json.load(board_busio_uart_port)
```
- This removes the need for intermediate copies of data when reading JSON from micropython stream protocol inputs.
- It also increases total application speed by parsing JSON concurrently with receiving on boards that read from UART via DMA.
- It simplifies code that users write while improving their apps.
vectorio builds on m4 express feather
Concrete shapes are composed into a VectorShape which is put into a displayio Group for display.
VectorShape provides transpose and x/y positioning for shape implementations.
Included Shapes:
* Circle
- A radius; Circle is positioned at its axis in the VectorShape.
- You can freely modify the radius to grow and shrink the circle in-place.
* Polygon
- An ordered list of points.
- Beteween each successive point an edge is inferred. A final edge closing the shape is inferred between the last
point and the first point.
- You can modify the points in a Polygon. The points' coordinate system is relative to (0, 0) so if you'd like a
top-center justified 10x20 rectangle you can do points [(-5, 0), (5, 0), (5, 20), (0, 20)] and your VectorShape
x and y properties will position the rectangle relative to its top center point
* Rectangle
A width and a height.
Fix for Issue #2812. Instead of reporting a missing attribute for functions such as time.time() and time.mktime(); platforms that do not have long integer support will raise a NotImplementedError
This adds initial support for an AES module named aesio. This
implementation supports only a subset of AES modes, namely
ECB, CBC, and CTR modes.
Example usage:
```
>>> import aesio
>>>
>>> key = b'Sixteen byte key'
>>> cipher = aesio.AES(key, aesio.MODE_ECB)
>>> output = bytearray(16)
>>> cipher.encrypt_into(b'Circuit Python!!', output)
>>> output
bytearray(b'E\x14\x85\x18\x9a\x9c\r\x95>\xa7kV\xa2`\x8b\n')
>>>
```
This key is 16-bytes, so it uses AES128. If your key is 24- or 32-
bytes long, it will switch to AES192 or AES256 respectively.
This has been tested with many of the official NIST test vectors,
such as those used in `pycryptodome` at
39626a5b01/lib/Crypto/SelfTest/Cipher/test_vectors/AES
CTR has not been tested as NIST does not provide test vectors for it.
Signed-off-by: Sean Cross <sean@xobs.io>
When allocate_display_bus_or_raise was factored out, the assignment
of the bus's Python type was lost. Restore it.
This would have affected displays of any type other than RGBMatrix, when
they were created dynamically. Boards with displays configured in flash
were unaffected.
Closes: #2792
This gets all the purely internal references. Some uses of
protomatter/Protomatter/PROTOMATTER remain, as they are references
to symbols in the Protomatter C library itself.
I originally believed that there would be a wrapper library around it,
like with _pixelbuf; but this proves not to be the case, as there's
too little for the library to do.
Surely readline() "rtype" is string not int as stated (and not bytes as some might expect).
Also it is not totally unambiguous what happens on a timeout so it would help to clarify in docs that on a timeout
it does NOT return with what it has read so far, rather it leaves all that in the buffer ready for a future read and returns nothing.
Likewise clarify that if timeout=0 but there is no newline it DOES return what it has read so far (NOT None).
At least this is what I think it does and/or is supposed to do!
Python docs are generally not too explicit about what is the proper treatment, so perhaps all the more reason to
clarify the interpretation adopted?
They're not readily distinguishable by type.
I also added the requested height optional parameter; this is checked
against the computed one. It's not feasible to use this parameter to
artificailly reduce the number of used rows, because changes in the
underlying C protomatter library would be required.
Finally, I added a better error message when the number of RGB pins was
not what was expected.
It was fixed as 0/0 even though it used to get it from the current
SPI state. This makes it more explicit with kwargs.
Thanks to magpie_lark and kmatocha on the Adafruit Support forum
for finding the issue: https://forums.adafruit.com/viewtopic.php?f=60&t=162515
PacketBuffer facilitates packet oriented BLE protocols such as BLE
MIDI and the Apple Media Service.
This also adds PHY, MTU and connection event extension negotiation
to speed up data transfer when possible.
Make no sense to say this is experimental and will change in 4.0.0 when we are already above 4.0.0.
This should be removed, or updated to say it will not be in x.0.0
This enables jeplayer to allocate just one MP3File at startup, rather
than have to make repeated large allocations while the application is
running.
The buffers have to be allocated their theoretical maximum, but that
doesn't matter much as all the real-life MP3 files I checked needed
that much allocation anyway.
Protocols are nice, but there is no way for C code to verify whether
a type's "protocol" structure actually implements some particular
protocol. As a result, you can pass an object that implements the
"vfs" protocol to one that expects the "stream" protocol, and the
opposite of awesomeness ensues.
This patch adds an OPTIONAL (but enabled by default) protocol identifier
as the first member of any protocol structure. This identifier is
simply a unique QSTR chosen by the protocol designer and used by each
protocol implementer. When checking for protocol support, instead of
just checking whether the object's type has a non-NULL protocol field,
use `mp_proto_get` which implements the protocol check when possible.
The existing protocols are now named:
protocol_framebuf
protocol_i2c
protocol_pin
protocol_stream
protocol_spi
protocol_vfs
(most of these are unused in CP and are just inherited from MP; vfs and
stream are definitely used though)
I did not find any crashing examples, but here's one to give a flavor of what
is improved, using `micropython_coverage`. Before the change,
the vfs "ioctl" protocol is invoked, and the result is not intelligible
as json (but it could have resulted in a hard fault, potentially):
>>> import uos, ujson
>>> u = uos.VfsPosix('/tmp')
>>> ujson.load(u)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: syntax error in JSON
After the change, the vfs object is correctly detected as not supporting
the stream protocol:
>>> ujson.load(p)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OSError: stream operation not supported
Whenever there is more than one argument, delegate the operation to
namedtuple_make_new. This allows other circuitpython-compatible
idioms, like with keywords
time.struct_time(tm_year=2000, tm_mon=1, tm_mday=1, tm_hour=0,
tm_min=0, tm_sec=14, tm_wday=5, tm_yday=5, tm_isdst=-1)
with 9 positional arguments, etc.
The only vaguely plausible CPython behavior still not permitted in
CircuitPython that I found is constructing a timetuple from a length-9
list, a la
time.struct_time(list(time.localtime())
Even better, by getting rid of an error message, the build shrinks a
tiny bit.
This doesn't cover ALL the cases that CPython permits for construction
of a struct_time, but it at least makes constructing from any namedtuple
work.
Closes: #2326
(or deinitialized, for those of us on this side of the pond)
Otherwise, a sequence like
```
audio = audiobusio.I2SOut(bit_clock=board.D6, word_select=board.D9, data=board.D10)
sine_wave_sample = audiocore.RawSample(sine_wave)
audio.play(sine_wave_sample, loop=True)
del audio
```
could free the memory associated with audio without stopping the
related background task. Later, when fresh objects are allocated within
a now-freed memory region, they can get overwritten in the background
task, leading to a hard crash.
This presumably can affect multiple I2S implementations, but it was
reported against the nRF one.
This PR refines the _bleio API. It was originally motivated by
the addition of a new CircuitPython service that enables reading
and modifying files on the device. Moving the BLE lifecycle outside
of the VM motivated a number of changes to remove heap allocations
in some APIs.
It also motivated unifying connection initiation to the Adapter class
rather than the Central and Peripheral classes which have been removed.
Adapter now handles the GAP portion of BLE including advertising, which
has moved but is largely unchanged, and scanning, which has been enhanced
to return an iterator of filtered results.
Once a connection is created (either by us (aka Central) or a remote
device (aka Peripheral)) it is represented by a new Connection class.
This class knows the current connection state and can discover and
instantiate remote Services along with their Characteristics and
Descriptors.
Relates to #586
Also, move the rendering setup code to shared-module from
shared-bindings.
In CP 5.0, displayio_display_core_set_region_to_update now starts
its own transaction, so it has to be moved outside of the transaction
started by the render call.
writeto_then_readfrom has been added to do a write -> no stop ->
repeated start -> read sequence. This is done to match the
capabilities of Blinka on Linux.
Code that uses stop=False will not work correctly on Blinka.
To fix, if stop=False then use writeto_then_readfrom otherwise use
writeto then readfrom_into.
First step in #2082