RP2040 and SAMD51:
- Detect when DMA has finished, and stop DMA audio explicitly.
- Do not accidentally reuse `first_buffer` supplied by WaveFile or RawSample. Always realloc `first_buffer` and `second_buffer`
RP2040:
- When audio playing is stopped, write a final zero to the output register. This prevents residual PWM tones.
- Handle buffer size for 8-bit samples properly for 16-bit output.
- Fail on some edge cases (which may not be possible at the moment).
The QR decoder has a single item that is 8908 bytes big and placed
on the stack. (struct datastream)
Without enlarging the stack, this will reliably crash.
Call `supervisor.disable_ble_workflow()` and the BLE workflow will
be disabled until the chip is reset.
This also includes a couple fixes:
1. Terminals can now be deinit by setting the tilegrid to NULL. This
prevents using the tilegrid before display is init.
2. Fix BLE serial send amount when sending more than a single packet.
Fixes#5049
On ESP ctrl-c during fake sleep will now stop the sleep. A crash
on real deep sleep is now fixed as well. (Exception string saving
was crashing on reading the deep sleep exception.) Fixes#4010
This also fixes nRF fake sleep after the first time. The internal
variable wasn't being reset early enough. Fixes#4869
Passing in a PWMOut still works but is deprecated. It will be
removed in CircuitPython 8.0.0
This also switches STM32 timer indices and channel indices to
0-based in our pin data rather than `- 1` everywhere. The latter is
more bug prone.
Most of the way for #3264
Tested on Metro M0, Metro M4, Feather S2, Feather nRF52840, Feather
STM32F4 and Arduino RP2040.
For RP2040 boards, we now change the default flash size based on
the configured flash. We will still try to read the size from the
flash first.
Fixes#4874
After the script stops with the exception thrown the final gc_sweep
will call any finalizers and they usually call deinit. deinit on
invalid objects can wreak havoc by changing random memory or
(hopefully) crashing. This fixes ensures the object is deinited
until initialization succeeds and the object is valid.
Do the same fix for I2C and SPI too.
Fixes#4700 and fixes#5005
As the CircuitPython grows, it may at some point no longer be possible
to squeeze it on some of the flash-less SAMD21 boards, so it would be
good to have the option of shrinking the filesystem size on per-board
basis. This change allows to define CIRCUITPY_INTERNAL_FLASH_FILESYSTEM_SIZE
inside the board's mpconfigborard.h file.
1. Check for correct error values from dma_claim_unused_channel.
2. Introduce a .stereo flag for simplicity.
3. Clarify PWM carrier frequency choice.
4. Start introducing quiescent audio value. Still need to ramp up/down.
5. Redo audio stop logic a bit.
6. Fix (unrelated) displayio dependency things.
There is still an interference problem between other DMA users and audio. Still debugging this.
Since the new keypad module is taking over gamepad functionality,
I'm switching to it. If this works well, I will make the change
for the remaining boards.
nRF CircuitPython boards will now provide the file transfer
service defined here: https://github.com/adafruit/Adafruit_CircuitPython_BLE_File_Transfer
USB capable boards will only advertise if previously bonded to a
device or if the reset button is pressed during the fast blue
flashes on start up. When pressed, the board will restart again but
the blue period will not flash.
Boards without USB will always advertise.
When previously bonded, the advertisement is private so that no
other peers can connect. If advertising publicly, the tx power is
lowered to reduce the likelihood of bonding from a distance.
This PR also fixes issues with loading identities of bonded peers
so that our address can now be resolved and we can resolve others'
addresses when scanning.
Commit 0abf6f830c removed _boot.py from the
manifest for the GENERIC_512K board because the build does not include a
filesystem. But the main code expects _boot.py to be there and prints an
error if it's not. So add a custom _boot.py, which just sets the
gc.threshold().
Signed-off-by: Damien George <damien@micropython.org>
This adds a wlan.config(reconnects=N) option to set the number of reconnect
attempts that will be made if the WLAN connection goes down. The default
is N=-1 (infinite retries, current behavior). Setting
wlan.config(reconnects=0) will disable the reconnect attempts.
A nice side effect of reconnects=0 is that wlan.status() will report the
disconnect reason now. See related issue #5326.
Ethernet-PHYs from ESP-IDF (LAN8720, IP101, RTL8201, DP83848) are now
supported in IDF v4.1 and above. PHY_KSZ8041 is only for ESP-IDF 4.3 and
above. ESP32S2 is not supported.
Signed-off-by: Tobias Eydam <eydam-prototyping@outlook.com>
The implementation uses the LPUARTx devices. Up to 8 UARTs can be used,
given that the pins are accessible. E.g. 8 on Teensy 4.1, 5 on
MIMXRT1020_EVK.
For Tennsy 4.0 and 4.1 the UART numbers are as printed on the pinout 1..N.
The MIMXRT10xx-EVK boards have only one UART named, which gets the number
1. All other UART are assigned to different Pins:
MIMXRT1010-EVK:
D0/D1 UART 1
D6/D7 UART 2
A0/D4 UART 3
MIMXRT1020-EVK:
D0/D1 UART 1
D6/D9 UART 2
D10/D12 UART 3
D14/D15 UART 4
A0/A1 UART 5
MIMXRT1050-EVK, MIMXRT1060-EVK, MIMXRT1064-EVK:
D0/D1 UART 1
D7/D6 UART 2
D8/D9 UART 3
A1/A0 UART 4
This fixes error: cast to smaller integer type 'int' from 'pthread_t'.
pthread_t is defined as long, not as int.
Signed-off-by: Pavol Rusnak <pavol@rusnak.io>
The rtc_set_datetime() from pico-sdk will validate the values in the
datetime_t structure and refuse to set the time if they aren't valid. It
makes sense to raise an exception if this happens instead of failing
silently which might be confusing (as an example, see:
https://github.com/micropython/micropython/pull/6928#issuecomment-860166044
).
The supplied value for microseconds in datetime() will be treated as a
starting value for the reported microseconds. Due to internal processing
in setting the time, there is an offset about 1 ms.
This change moves the datetime tuple format back to the one used by all the
other ports:
(year, month, day, weekday, hour, minute, second, microsecond)
Weekday is a number between 0 and 6, with 0 assigned to Monday. It has to
be provided when setting the RTC with datetime(), but will be ignored on
entry and calculated when needed.
The weekday() method was removed, since that is now again a part of the
datetime tuple.
The now() method was updated so it continues to return a tuple that matches
CPython's datetime module.
Initial support for machine.RTC on rp2 port. It only supports datetime()
method and nothing else. The method gets/returns a tuple of 8 items, just
like esp32 port, for example, but the usec parameter is ignored as the RP2
RTC only works up to seconds precision.
The Pico RTC isn't very useful as the time is lost during reset and there
seems to be no way to easily power up just the RTC clock with a low current
voltage, but still there seems to be use-cases for that, see issues #6831,
and a Thonny issue #1592. It was also requested for inclusion on v1.15
roadmap on #6832.
Signed-off-by: Krzysztof Adamski <k@japko.eu>
Changes introduced are:
- the application offset is now loaded from the partition table instead of
being hard-coded to 0x10000
- maximum size of all sections is computed using the partition table
- an error is generated if any section overflows its allocated space
- remaining bytes are printed for each section
Signed-off-by: Damien George <damien@micropython.org>
`idf.py monitor` connects to the debug UART and shows the messages. In
contrast to a traditional terminal program, it also has the limited
ability to transform hex addresses into file & line number information,
especially for debug builds.
This requires the elf file be copied to a specific place.
.. this board is nearly the same as the "1.2" version originally
released, but makes a few changes to reduce pin conflicts between the 13-pin
camera header and the bootstrapping pins. "1.3" was introduced in summer
2020-- check the bottom of your board silk to find out whether you have a 1.2
or a 1.3, because it's not clear whether there is remaining 1.2 stock.
Another vexing fact about the 1.3 is that its LCD can have one of two
chipets, and the chipset used is not marked anywhere!
This commit adds a few math functions to the source list in the Makefile,
and implements the log2f function, so that ulab can be compiled on the nrf
boards. It also addresses part of #5162.
This commit fixes the following problems converting to/from Python integers
and ffi types:
- integers of 8 and 16 bits not working on big endian
- integers of 64 bits not working on 32 bits architectures
- unsigned returns were converted to signed Python integers
Fixes issue #7269.
Currently only advertising and scanning are supported, using the ring
buffer for events (ie not synchronous events at this stage).
The ble_gap_advertise.py multi-test passes (tested on a nucleo_wb55rg
board).
Signed-off-by: Damien George <damien@micropython.org>
Zephyr's default value for CONFIG_NET_SOCKETS_POSIX_NAMES was changed
from false to true between Zephyr v2.5.0 and v2.6.0. This caused
conflicts in MicroPython, which uses the zsock_ prefixed functions, so
disable it.
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
Zephyr's Kconfig symbols and defaults for SDHC/SDMMC disk drivers and
the disk access subsystem were reworked between Zephyr v2.5.0 and
v2.6.0. Update MicroPython accordingly.
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
Take changes from https://github.com/micropython/micropython/pull/3694
(expected to be merged soon) as well as other accumulated stuff from
upstream that we want.
Leave our desired differences, including:
* silencing warnings in python3
* renaming the file descriptors returned by openpty()
* adding ulab tests
* Adding "." to the import path for skip_if
This speeds up `make test_full` and should also reduce the time in CI
a little bit.
Initial version, using the LP RTC clock. It provides setting the date and
time with rtc.init() or rtc.datetime(), and reading the date and time with
rtc.datetime() or rtc.now(). The method weekday() reports the weekday of
the current date. It starts with 0 for Monday.
The tuple order for datetime() and now() matches the CPython sequence:
(year, month, day, hour, minute, second, microsecond, TZ). TZ is ignored
and reported as None. Microsecond is provided at a best effort.
If a battery is not supplied, the default boot date/time is 1970/1/1 0:0:0.
With a battery, the clock continues to run even when the board is not
powered. The clock is quite precise. If not, using rtc.calibration() may
help.
It supports three hardware timer channels based on the PIT timers of the
MIMXRT MCU. The timer id's are 0, 1 and 2. On soft reboot all active
timers will be stopped via finalisers.
This is required since the Teensy Halfkay loader attempts to erase all of
the flash but fails to do so, at least in my tests. Formatting brings it
back to a known state.
This commit adds full support for a filesystem on all boards, with a block
device object mimxrt.Flash() and uos.VfsLfs2 enabled.
Main changes are:
- Refactoring of linker scripts to accomodate reserved area for VFS. VFS
will take up most of the available flash. 1M is reserved for code. 9K is
reserved for flash configuration, interrupts, etc.
- Addition of _boot.py with filesystem init code, called from main.c.
- Definition of the mimxrt module with a Flash class in modmimxrt.[ch].
- Implementation of a flash driver class in mimxrt_flash.c. All flashing
related functions are stored in ITCM RAM.
- Addition of the uos module with filesystem functions.
- Implementation of uos.urandom() for the sake of completeness of the uos
module.
It uses sample code from CircuitPython supplied under MIT license, which
uses the NXP SDK example code.
Done in collaboration with Philipp Ebensberger aka @alphaFred who
contributed the essential part to enable writing to flash while code is
executing, among other things.
Adds support for NeoPixels on GPIO32 and GPIO33 on ESP32. Otherwise,
NeoPixels wired to GPIO32/33 wll silently fail without any hints to the
user.
With thanks to @robert-hh.
Fixes issue #7221.
ATOM is a very small ESP32 development board produced by M5Stack, with a
size of 24mm * 24mm, with peripherals such as WS2812, IR, button, MPU6886
(Only Matrix), and 8 GPIO extensions. It also has a plastic shell.
This configuration is used by @ladyada and more often than it should
we've discovered late that a change introduced problems building
there.
By adding this to regular CI, hopefully we learn about and fix these
issues sooner rather than later.