ESP32-S3 defines two additional general use pins in
ports/espressif/peripherals/esp32s3/pins.h, for which
support is missing in the microcontroller module HAL.
This prevents running into the pins that cannot be reset. On 1011
it was off by one pin that isn't attached to the package. So,
having the USB pins forbidden prevented resetting to a NULL address.
Fixes#7952
esp_ping_new_session can fail, particularly if ping is called quickly
many times in succession.
This is because `esp_ping_new_session` has to do a bunch of stuff
including creating a task and a socket. Calling `esp_ping_delete_session`
doesn't clean up these resources immediately. Instead, it signals the
task to clean up resources and exit 'soon', but 'soon' is defined as 1
second.
When the calls are frequent, the in-use sockets and tasks fill up
available slots—I didn't actually check which resource gets used
up first.
With this change, the ping call will raise an exception instead of
continuing with a call to esp_ping_start that crashes.
Closes#5980 based on my testing on an ESP32S3-N8R2.
The internal flash cache wasn't being properly used, because
`write_blocks` unconditionally performed the flash write.
Fixing this so that the write's not done until `internal_flash_flush`
fixes the problem in my test program with i2sout & synthio.
as a future optimization, `flash_read_blocks` could learn to read out
of the cache, but that's probably not super important.
This class allows much more expressive sound synthesis:
* tremolo & vibrato
* arbitrary frequency
* different evelope & waveform per note
* all properties dynamically settable from Python code
This adds a script to generate the peripherals files (except clock).
It adds support for the 1015, 1020, 1040, and 1050 EVKs.
Some work was started on 1176 but it isn't working. So, the board
def is in a separate branch.
Fixes#3521. Fixes#2477.
Since c80e7c14e6 changed the GC heap to use
all unused RAM, there is no longer any RAM available for the traditional C
heap (which is not used by default in MicroPython but may be used by C
extensions). This commit adds a provision for a board to reserve RAM for
the C heap, by defining MICROPY_C_HEAP_SIZE.
Signed-off-by: Damien George <damien@micropython.org>
The previous code worked on ESP32 but not ESP32-S3. All the IDF (v4.4.3)
examples call rmt_set_tx_loop_mode before rmt_write_items, so make that
change here.
Signed-off-by: Damien George <damien@micropython.org>
- Use HCI_TRACE macro consistently.
- Use the same colour formatting.
- Add a tool to convert to .pcap for Wireshark.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This adds a mechanism to track a pending notify/indicate operation that
is deferred due to the send buffer being full. This uses a tracked alloc
that is passed as the content arg to the callback.
This replaces the previous mechanism that did this via the global pending
op queue, shared with client read/write ops.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Makes gatts_notify and gatts_indicate work in the same way: by default they
send the DB value, but you can manually override the payload.
In other words, makes gatts_indicate work the same as gatts_notify.
Note: This removes support for queuing notifications and indications on
btstack when the ACL buffer is full. This functionality will be
reimplemented in a future commit.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Spotted the Cosmo_pico port on circuitpython.org which is the same class of device as the Pimoroni PICO dv so I'm switching the VID/PID to use the Raspberry Pi owned values rather than the Adafruit values just as the Como device uses.
Don't idle from main if we scheduled an interrupt for 0 ticks in
the future.
Have RP2040 detect wakes that happen between setting the timer and
the idle call.
Fixes#7361
The Wio Terminal includes a RealTek RTL8720D as a companion to the main chip to provide WiFi and Bluetooth capabilities via eRPC over a UART connection. The WIO Terminal schematic labels some pins as the RXD/TXD for the UART, and that was captured in the board definition for CircuitPython. However, these pins may be used for logging in another mode, but they are not the main pins used to communicate with the RTL chip. The correct configuration is RX on PC24/pad 2 and TX on PB24/pad 0 of SERCOM 0. The comments on the pin definitions now reflect this situation, for anyone trying to get the WiFi/BLE to work on the Wio Terminal.
This commit adds support for the `timeout` keyword argument to machine.I2C
on the rp2 port, following how it's done on other ports.
The main motivation here is avoid the interpreter crashing due to infinite
loops when SDA is stuck low, which is quite common if the board gets reset
while reading from an I2C device.
A default timeout of 50ms is chosen because it's consistent with:
- Commit a707fe50b0 which used a timeout of
50,000us for zero-length writes on the rp2 port.
- The machine.SoftI2C class which uses 50,000us as the default timeout.
- The stm32 port's hardware I2C, which uses 50,000us for
I2C_POLL_DEFAULT_TIMEOUT_US.
This commit also fixes the default timeout on the esp32 port to be
consistent with the above, and updates the documentation for machine.I2C to
document this keyword argument.
PicoDVI in CP support 640x480 and 800x480 on Feather DVI, Pico and
Pico W. 1 and 2 bit grayscale are full resolution. 8 and 16 bit
color are half resolution.
Memory layout is modified to give the top most 4k of ram to the
second core. Its MPU is used to prevent flash access after startup.
The port saved word is moved to a watchdog scratch register so that
it doesn't get overwritten by other things in RAM.
Right align status bar and scroll area. This normally gives a few
pixels of padding on the left hand side and improves the odds it is
readable in a case. Fixes#7562
Fixes c stack checking. The length was correct but the top was being
set to the current stack pointer instead of the correct top.
Fixes#7643
This makes Bitmap subscr raise IndexError instead of ValueError
when the index arguments are wrong.
Doing a squash merge to avoid having the `slc_cli_linux` .zip files in the history. They were added in one commit and removed and replaced with a submodule in another.
* Initial commit for xg24
* Fix SLC issue
* Fix SLC extract fail
* Change board's name
* Correct spelling of code
Build immediately after slc generate
* Remove VID and PID
* Change creator and creation id
* Apply new creator_id and creation_id
* Update makefile, error message, mcu_processor function
* Update mpconfigboard.mk
* Update Board extensions, PORT_DEPS
* Update makefile
* Add exclude_patterns
* Show java, jinja2 version
* Show path for debugging CI
* Add requirements-dev for slc
* Add PATH slc_cli
* Update background function
* Add jinja2 PATH
* Show PATH
* Update jinja2 path
* Update jinja2 path
* Update jinja2 path
* Update jinja2 path
* Change slc folder
* Change markupsafe folder
* Add symbolic link for slc
* Update makefile
* Update makefile
* Update MX25R3235F.toml from submodule nvm.toml
* alphabetize the list
* Remove slc_cli_linux folder
* Update slc_cli submodule
---------
Co-authored-by: Chat Nguyen <cvnguyen@silabs.com>
Co-authored-by: silabs-ChatNguyen <chat.nguyen@silabs.com>
Co-authored-by: silabs-ChatNguyen <126220343+silabs-ChatNguyen@users.noreply.github.com>
If a board defines a custom bootloader entry function it will be called
first, if not and the ROM API supports RUN bootloader API, then
`machine.bootloader()` will jump to the ROM serial downloader in USB mode.
This commit allows boards to disable Ethernet and keep the networking stack
enabled, to use an alternate networking interface, such as WiFi.
Note that the `network` and `socket` modules are now enabled by default for
a board.
This commit is necessary to make MicroPython work on this eval kit out of
the box, as the eval kit ships with the HyperFlash physically disconnected
from the bus (refer to the schematics or the user guide) and the QSPI
connected instead, but the fuses/board/pins are configured to boot from
internal flash (on FlexSPI2).
Note that enabling the HyperFlash is not trivial, as it requires soldering
and desoldering of many small footprint resistors and changing fuses.
Previous pins definition stated that the UART1 RTS and CTS were not connected. They are connected and can currently be used via A1 and PWM0 respectively. To make things a little clearer, enabling the RTS1/CTS1.
In #7497 port_background_task was renamed to port_background_tick
but the actual call site wasn't changed. This meant that it was
no longer called!
Rename more functions from task to tick to make it clearer which is
which.
Fixes polling thread looping forever hangs preventing new connections.
Don't lose listening sockets on mp resets and re-init.
Keep better separation of "system" and "user" sockets.
Track socket states to prevent re-use of sockets before closed.
Close REST socket when transaction completes. No post-init.
Remove unnecessary state flags.
Helps prevent the filesystem from getting formatted by mistake, among other
things. For example, on a Pico board, entering Ctrl+D and Ctrl+C fast many
times will eventually wipe the filesystem (without warning or notice).
Further rationale: Ctrl+C is used a lot by automation scripts (eg mpremote)
and UI's (eg Mu, Thonny) to get the board into a known state. If the board
is not responding for a short time then it's not possible to know if it's
just a slow start up (eg in _boot.py), or an infinite loop in the main
application. The former should not be interrupted, but the latter should.
The only way to distinguish these two cases would be to wait "long enough",
and if there's nothing on the serial after "long enough" then assume it's
running the application and Ctrl+C should break out of it. But defining
"long enough" is impossible for all the different boards and their possible
behaviour. The solution in this commit is to make it so that frozen
start-up code cannot be interrupted by Ctrl+C. That code then effectively
acts like normal C start-up code, which also cannot be interrupted.
Note: on the stm32 port this was never seen as an issue because all
start-up code is in C. But now other ports start to put more things in
_boot.py and so this problem crops up.
Signed-off-by: David Grayson <davidegrayson@gmail.com>
The dispatch active flag is only set once and never reset, so it will
always call the dispatch handler (once enabled), and it's not really
needed because it doesn't make things more efficient.
Also remove unused included headers.
Changes in this commit:
- Move the pwm_seq array to the p_config data structure. That prevents
potential resource collisions between PWM devices.
- Rename the keyword argument 'id' to 'device'. That's consistent with the
SAMD port as the other port allowing to specify it.
In contrast to MidiTrack, this can be controlled from Python code,
turning notes on/off as desired.
Not tested on real HW yet, just the acceptance test based on checking
which notes it thinks are held internally.
This makes all the samples from Dan's collection register as 440Hz
when playing on pwmio or i2sout, using https://webaudiodemos.appspot.com/pitchdetect/index.html
to detect the frequency played (all should show as A 440Hz; an error
of up to 20 "cents" should be treated as OK)
There's an audible carrier with PWM output and the 8kHz samples. This is
probably a limitation of the peripheral which is documented as being for
input signals of 44 kHz or 48 kHz; the carrier frequency is a fixed
multiple of the sample frequency.
Closes#7800
.. via a peripheral known as the "MQS" (medium quality sound). It uses an
~192kHz PWM signal to generate audio. It sounds OK on a small speaker with
no amplifier. There's a small pop when starting/stopping audio, as is
typical.
.. and write a general 'pin change interrupt' facility to power it
This uses the same quadrature state machine as atmel-samd, nrf, and
rp2040. The 1011 doesn't have a dedicated encoder peripheral, so we
go the pin-change + software route.
This is a best-effort implementation of write polling. It's difficult to
do correctly because if there are multiple output streams (eg UART and USB
CDC) then some may not be writeable while others are. A full solution
should also have a return value from mp_hal_stdout_tx_strn(), returning the
number of bytes written to the stream(s). That's also hard to define.
The renesas-ra and stm32 ports already implement a similar best-effort
mechanism for write polling.
Fixes issue #11026.
Signed-off-by: Damien George <damien@micropython.org>
This reverts commit 7e6e824d56.
Fixes#7770
The change in #7623 needs to be revered; the raise-site added in #7632
is the correct one and the one in socketpool needs to be reverted.
This is not affecting 8.0.x because #7623 was not back-ported to there
before we realized it was not a full fix.
Both #7770 and #7606 should be re-tested. I didn't test.
tested on metro m7 (green prototype version) with max98357a i2s amplifier and the following test code:
```py
import board
import time
import digitalio
from audiobusio import I2SOut
from audiocore import RawSample
from microcontroller import pin
from ulab import numpy as np
n = np.array(np.sin(np.linspace(0, np.pi*2, 218, endpoint=False)) * 200, dtype=np.int16)
print(n)
r = RawSample(n, sample_rate=8000, channel_count=2)
def main():
with digitalio.DigitalInOut(board.LED) as l:
l.switch_to_output(True)
value = False
while True:
with I2SOut(pin.GPIO_06, pin.GPIO_07, pin.GPIO_04) as i:
time.sleep(.01)
l.value = value = not value
i.play(r, loop=True)
print(i.playing)
time.sleep(.5)
i.stop()
print("STOPPED")
print(i.playing)
time.sleep(.5)
i.play(r, loop=True)
print(i.playing)
print("PLAY AGAIN")
time.sleep(.5)
time.sleep(1)
```
Only stereo, 16-bit, raw samples were tested; the sample rate is actually fixed
at 48kHz in the core right now. There is more to do, but the basics work.
# Conflicts:
# ports/mimxrt10xx/Makefile
# ports/mimxrt10xx/mpconfigport.mk
Prior to this change, setting of UART parameters like parity, stop bits or
data bits did not work correctly. As suggested by @iabdalkader, adding
__DSB() fixes the problem, making sure that changes to the UART LCR_H
register are seen by the peripheral.
Note: the FIFO is already enabled in the call to uart_init(), so the call
to uart_set_fifo_enabled() is not required, but kept for visibility.
Fixes issue #10976.
The following have been tested and are working:
- 550MHz CPU frequency
- UART REPL via ST-Link
- USB REPL and mass storage
- 3x LEDs and 1x user button
- Ethernet
Signed-off-by: Damien George <damien@micropython.org>
For builds with DEBUG=1 and MICROPY_HW_ENABLE_UART_REPL=1, calling
stdio_init_all() in main() detaches the UART input from REPL. This change
suppresses calling stdio_init_all() then.
Previously, setting MICROPY_HW_ENABLE_USBDEV to 0 caused build errors. The
change affects the nrf and samd ports as well, so MICROPY_HW_ENABLE_USBDEV
had to be explicitly enabled there.
The configuration options MICROPY_HW_ENABLE_USBDEV and
MICROPY_HW_ENABLE_UART_REPL are independent, and can be enabled or disabled
by a board.
Signed-off-by: Damien George <damien@micropython.org>
Changes in this commit:
- Add the timeout and timeout_char keyword options.
- Make uart.read() non-blocking.
- Add uart.any().
- Add ioctl MP_STREAM_POLL handling.
- Change uart.write() into non-busy waiting. uart.write() still waits until
all data has been sent, but calls MICROPY_EVENT_POLL_HOOK while waiting.
uart.write() uses DMA for transfer. One option would be to add a small
local buffer, such that transfers up to the size of the buffer could be
done without waiting.
- As a side effect to the change of uart.write(), uart.txdone() and ioctl
flush now report/wait correctly for the end of transmission.
- Change machine_hard_uart_buf_t in machine_hard_uart_obj_t to an instance
of that struct, rather than a pointer to one.
* Enable dcache for OCRAM where the VM heap lives.
* Add CIRCUITPY_SWO_TRACE for pushing program counters out over the
SWO pin via the ITM module in the CPU. Exempt some functions from
instrumentation to reduce traffic and allow inlining.
* Place more functions in ITCM to handle errors using code in RAM-only
and speed up CP.
* Use SET and CLEAR registers for digitalio. The SDK does read, mask
and write.
* Switch to 2MiB reserved for CircuitPython code. Up from 1MiB.
* Run USB interrupts during flash erase and write.
* Allow storage writes from CP if the USB drive is disabled.
* Get perf bench tests running on CircuitPython and increase timeouts
so it works when instrumentation is active.
The original list left D4 (GPIO4), VN (GPIO39) and VP (GPIO36) out.
Added aliases for 1, 3, 16 and 17 with their GPIO names, even though they won't be used as such since they are UART0 and UART2
Even if boards do not have a clock crystal. In that case, the clock
quality will be very poor.
Always having machine.RTC means that the date/time can be set in a way that
is consistent with other ports.
This commit also removes the special code in modutime.c for devices without
the RTC class.
Signed-off-by: Damien George <damien@micropython.org>
These have the same frequency, but can have different duty cycle and
polarity.
pwm.deinit() stops all channels of a module, but does not release the
module. pwm.init() without arguments restarts all outputs.
Using extmod/machine_pwm.c for the Python bindings and the existing
softpwm.c driver, by just adding the interface.
Properties:
- Frequency range 1-3906 Hz.
- All PWM outputs run at the same frequency but can have different duty
cycles.
- Limited to the P0.x pins.
Since it uses the existing softpwm.c mechanism, it will be affected by
playing music with the music class.
This is a breaking change, making the hardware PWM on the nrf port
compatible with the other ports providing machine.PWM.
Frequency range 4Hz - ~5.4 MHz. The base clock range is 125kHz to 16 MHz,
and the divider range is 3 - 32767.
The hardware supports up to four outputs per PWM device with different duty
cycles, but only one output is (and was) supported.