639 lines
19 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/nlr.h"
#include "py/lexer.h"
#include "py/parse.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "py/stackctrl.h"
#include "py/gc.h"
#include "py/mphal.h"
#include "lib/utils/pyexec.h"
#include "lib/fatfs/ff.h"
2014-03-12 18:06:26 -07:00
#include "systick.h"
#include "pendsv.h"
#include "gccollect.h"
#include "readline.h"
#include "i2c.h"
#include "spi.h"
#include "uart.h"
#include "timer.h"
#include "led.h"
#include "pin.h"
#include "extint.h"
#include "usrsw.h"
#include "usb.h"
2014-03-15 12:54:48 +00:00
#include "rtc.h"
#include "storage.h"
#include "sdcard.h"
#include "rng.h"
#include "accel.h"
#include "servo.h"
2014-03-24 15:15:33 +00:00
#include "dac.h"
#include "can.h"
#include "modnetwork.h"
2014-03-12 18:06:26 -07:00
void SystemClock_Config(void);
static FATFS fatfs0;
#if MICROPY_HW_HAS_SDCARD
static FATFS fatfs1;
#endif
void flash_error(int n) {
for (int i = 0; i < n; i++) {
led_state(PYB_LED_R1, 1);
led_state(PYB_LED_R2, 0);
HAL_Delay(250);
led_state(PYB_LED_R1, 0);
led_state(PYB_LED_R2, 1);
HAL_Delay(250);
}
led_state(PYB_LED_R2, 0);
}
2014-06-21 18:43:44 +02:00
void NORETURN __fatal_error(const char *msg) {
for (volatile uint delay = 0; delay < 10000000; delay++) {
}
led_state(1, 1);
led_state(2, 1);
led_state(3, 1);
led_state(4, 1);
mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
mp_hal_stdout_tx_strn(msg, strlen(msg));
for (uint i = 0;;) {
led_toggle(((i++) & 3) + 1);
for (volatile uint delay = 0; delay < 10000000; delay++) {
}
if (i >= 16) {
// to conserve power
__WFI();
}
}
}
void nlr_jump_fail(void *val) {
printf("FATAL: uncaught exception %p\n", val);
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)val);
__fatal_error("");
}
2014-06-14 15:53:11 +02:00
#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
2014-06-14 14:41:11 +02:00
(void)func;
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
__fatal_error("");
}
2014-06-14 15:53:11 +02:00
#endif
2014-06-14 14:41:11 +02:00
STATIC mp_obj_t pyb_main(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_opt, MP_ARG_INT, {.u_int = 0} }
};
if (MP_OBJ_IS_STR(pos_args[0])) {
MP_STATE_PORT(pyb_config_main) = pos_args[0];
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
MP_STATE_VM(mp_optimise_value) = args[0].u_int;
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_main_obj, 1, pyb_main);
static const char fresh_boot_py[] =
"# boot.py -- run on boot-up\r\n"
"# can run arbitrary Python, but best to keep it minimal\r\n"
"\r\n"
"import machine\r\n"
"import pyb\r\n"
"#pyb.main('main.py') # main script to run after this one\r\n"
"#pyb.usb_mode('CDC+MSC') # act as a serial and a storage device\r\n"
"#pyb.usb_mode('CDC+HID') # act as a serial device and a mouse\r\n"
;
static const char fresh_main_py[] =
"# main.py -- put your code here!\r\n"
;
static const char fresh_pybcdc_inf[] =
#include "genhdr/pybcdc_inf.h"
;
static const char fresh_readme_txt[] =
"This is a MicroPython board\r\n"
"\r\n"
"You can get started right away by writing your Python code in 'main.py'.\r\n"
"\r\n"
"For a serial prompt:\r\n"
" - Windows: you need to go to 'Device manager', right click on the unknown device,\r\n"
" then update the driver software, using the 'pybcdc.inf' file found on this drive.\r\n"
" Then use a terminal program like Hyperterminal or putty.\r\n"
" - Mac OS X: use the command: screen /dev/tty.usbmodem*\r\n"
" - Linux: use the command: screen /dev/ttyACM0\r\n"
"\r\n"
"Please visit http://micropython.org/help/ for further help.\r\n"
;
// we don't make this function static because it needs a lot of stack and we
// want it to be executed without using stack within main() function
void init_flash_fs(uint reset_mode) {
// try to mount the flash
FRESULT res = f_mount(&fatfs0, "/flash", 1);
if (reset_mode == 3 || res == FR_NO_FILESYSTEM) {
// no filesystem, or asked to reset it, so create a fresh one
// LED on to indicate creation of LFS
led_state(PYB_LED_R2, 1);
uint32_t start_tick = HAL_GetTick();
res = f_mkfs("/flash", 0, 0);
if (res == FR_OK) {
// success creating fresh LFS
} else {
__fatal_error("could not create LFS");
}
// set label
f_setlabel("/flash/pybflash");
// create empty main.py
FIL fp;
f_open(&fp, "/flash/main.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
// TODO check we could write n bytes
f_close(&fp);
// create .inf driver file
f_open(&fp, "/flash/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS);
f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n);
f_close(&fp);
// create readme file
f_open(&fp, "/flash/README.txt", FA_WRITE | FA_CREATE_ALWAYS);
f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n);
f_close(&fp);
// keep LED on for at least 200ms
sys_tick_wait_at_least(start_tick, 200);
led_state(PYB_LED_R2, 0);
} else if (res == FR_OK) {
// mount sucessful
} else {
__fatal_error("could not access LFS");
}
// The current directory is used as the boot up directory.
// It is set to the internal flash filesystem by default.
f_chdrive("/flash");
// Make sure we have a /flash/boot.py. Create it if needed.
FILINFO fno;
#if _USE_LFN
fno.lfname = NULL;
fno.lfsize = 0;
#endif
res = f_stat("/flash/boot.py", &fno);
if (res == FR_OK) {
if (fno.fattrib & AM_DIR) {
// exists as a directory
// TODO handle this case
// see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
} else {
// exists as a file, good!
}
} else {
// doesn't exist, create fresh file
// LED on to indicate creation of boot.py
led_state(PYB_LED_R2, 1);
uint32_t start_tick = HAL_GetTick();
FIL fp;
f_open(&fp, "/flash/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
// TODO check we could write n bytes
f_close(&fp);
// keep LED on for at least 200ms
sys_tick_wait_at_least(start_tick, 200);
led_state(PYB_LED_R2, 0);
}
}
STATIC uint update_reset_mode(uint reset_mode) {
#if MICROPY_HW_HAS_SWITCH
if (switch_get()) {
// The original method used on the pyboard is appropriate if you have 2
// or more LEDs.
#if defined(MICROPY_HW_LED2)
for (uint i = 0; i < 3000; i++) {
if (!switch_get()) {
break;
}
HAL_Delay(20);
if (i % 30 == 29) {
if (++reset_mode > 3) {
reset_mode = 1;
}
led_state(2, reset_mode & 1);
led_state(3, reset_mode & 2);
led_state(4, reset_mode & 4);
}
}
// flash the selected reset mode
for (uint i = 0; i < 6; i++) {
led_state(2, 0);
led_state(3, 0);
led_state(4, 0);
HAL_Delay(50);
led_state(2, reset_mode & 1);
led_state(3, reset_mode & 2);
led_state(4, reset_mode & 4);
HAL_Delay(50);
}
HAL_Delay(400);
#elif defined(MICROPY_HW_LED1)
// For boards with only a single LED, we'll flash that LED the
// appropriate number of times, with a pause between each one
for (uint i = 0; i < 10; i++) {
led_state(1, 0);
for (uint j = 0; j < reset_mode; j++) {
if (!switch_get()) {
break;
}
led_state(1, 1);
HAL_Delay(100);
led_state(1, 0);
HAL_Delay(200);
}
HAL_Delay(400);
if (!switch_get()) {
break;
}
if (++reset_mode > 3) {
reset_mode = 1;
}
}
// Flash the selected reset mode
for (uint i = 0; i < 2; i++) {
for (uint j = 0; j < reset_mode; j++) {
led_state(1, 1);
HAL_Delay(100);
led_state(1, 0);
HAL_Delay(200);
}
HAL_Delay(400);
}
#else
#error Need a reset mode update method
#endif
}
#endif
return reset_mode;
}
int main(void) {
// TODO disable JTAG
// Stack limit should be less than real stack size, so we have a chance
// to recover from limit hit. (Limit is measured in bytes.)
mp_stack_set_limit((char*)&_ram_end - (char*)&_heap_end - 1024);
2014-06-25 03:16:17 +03:00
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
2014-03-12 21:59:33 +00:00
// set the system clock to be HSE
SystemClock_Config();
// enable GPIO clocks
__GPIOA_CLK_ENABLE();
__GPIOB_CLK_ENABLE();
__GPIOC_CLK_ENABLE();
__GPIOD_CLK_ENABLE();
#if defined(__HAL_RCC_DTCMRAMEN_CLK_ENABLE)
// The STM32F746 doesn't really have CCM memory, but it does have DTCM,
// which behaves more or less like normal SRAM.
__HAL_RCC_DTCMRAMEN_CLK_ENABLE();
#else
2014-03-12 21:59:33 +00:00
// enable the CCM RAM
__CCMDATARAMEN_CLK_ENABLE();
#endif
2014-03-12 21:59:33 +00:00
#if defined(MICROPY_BOARD_EARLY_INIT)
MICROPY_BOARD_EARLY_INIT();
#endif
//TODO - Move the following to a board_init.c file for the NETDUINO
#if 0
#if defined(NETDUINO_PLUS_2)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
#if MICROPY_HW_HAS_SDCARD
// Turn on the power enable for the sdcard (PB1)
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
#endif
// Turn on the power for the 5V on the expansion header (PB2)
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET);
}
2014-03-12 18:06:26 -07:00
#endif
#endif
// basic sub-system init
pendsv_init();
#if defined(MICROPY_HW_USE_ALT_IRQ_FOR_CDC)
HAL_NVIC_SetPriority(PVD_IRQn, 6, 0); // same priority as USB
HAL_NVIC_EnableIRQ(PVD_IRQn);
#else
timer_tim3_init();
#endif
led_init();
#if MICROPY_HW_HAS_SWITCH
switch_init0();
#endif
#if defined(USE_DEVICE_MODE)
// default to internal flash being the usb medium
pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_FLASH;
#endif
int first_soft_reset = true;
soft_reset:
// check if user switch held to select the reset mode
#if defined(MICROPY_HW_LED2)
led_state(1, 0);
led_state(2, 1);
#else
led_state(1, 1);
led_state(2, 0);
#endif
led_state(3, 0);
led_state(4, 0);
uint reset_mode = update_reset_mode(1);
#if MICROPY_HW_ENABLE_RTC
if (first_soft_reset) {
rtc_init_start(false);
}
2014-03-12 18:06:26 -07:00
#endif
// more sub-system init
#if MICROPY_HW_HAS_SDCARD
if (first_soft_reset) {
sdcard_init();
}
#endif
if (first_soft_reset) {
storage_init();
}
// GC init
gc_init(&_heap_start, &_heap_end);
// Micro Python init
mp_init();
mp_obj_list_init(mp_sys_path, 0);
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
mp_obj_list_init(mp_sys_argv, 0);
// Initialise low-level sub-systems. Here we need to very basic things like
// zeroing out memory and resetting any of the sub-systems. Following this
// we can run Python scripts (eg boot.py), but anything that is configurable
// by boot.py must be set after boot.py is run.
readline_init0();
pin_init0();
extint_init0();
timer_init0();
uart_init0();
// Define MICROPY_HW_UART_REPL to be PYB_UART_6 and define
// MICROPY_HW_UART_REPL_BAUD in your mpconfigboard.h file if you want a
// REPL on a hardware UART as well as on USB VCP
#if defined(MICROPY_HW_UART_REPL)
{
mp_obj_t args[2] = {
MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL),
MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL_BAUD),
};
MP_STATE_PORT(pyb_stdio_uart) = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args);
}
2014-03-16 00:22:22 -07:00
#else
MP_STATE_PORT(pyb_stdio_uart) = NULL;
2014-03-16 00:22:22 -07:00
#endif
#if MICROPY_HW_ENABLE_CAN
can_init0();
#endif
#if MICROPY_HW_ENABLE_RNG
rng_init0();
#endif
i2c_init0();
spi_init0();
pyb_usb_init0();
// Initialise the local flash filesystem.
// Create it if needed, mount in on /flash, and set it as current dir.
init_flash_fs(reset_mode);
#if MICROPY_HW_HAS_SDCARD
// if an SD card is present then mount it on /sd/
if (sdcard_is_present()) {
FRESULT res = f_mount(&fatfs1, "/sd", 1);
if (res != FR_OK) {
printf("[SD] could not mount SD card\n");
} else {
// TODO these should go before the /flash entries in the path
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib));
if (first_soft_reset) {
// use SD card as medium for the USB MSD
#if defined(USE_DEVICE_MODE)
pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_SDCARD;
#endif
}
#if defined(USE_DEVICE_MODE)
// only use SD card as current directory if that's what the USB medium is
if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_SDCARD)
#endif
{
// use SD card as current directory
f_chdrive("/sd");
}
}
}
#endif
// reset config variables; they should be set by boot.py
MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL;
// run boot.py, if it exists
// TODO perhaps have pyb.reboot([bootpy]) function to soft-reboot and execute custom boot.py
if (reset_mode == 1 || reset_mode == 3) {
const char *boot_py = "boot.py";
FRESULT res = f_stat(boot_py, NULL);
if (res == FR_OK) {
int ret = pyexec_file(boot_py);
if (ret & PYEXEC_FORCED_EXIT) {
goto soft_reset_exit;
}
if (!ret) {
flash_error(4);
}
}
}
// turn boot-up LEDs off
#if !defined(MICROPY_HW_LED2)
// If there is only one LED on the board then it's used to signal boot-up
// and so we turn it off here. Otherwise LED(1) is used to indicate dirty
// flash cache and so we shouldn't change its state.
led_state(1, 0);
#endif
led_state(2, 0);
led_state(3, 0);
led_state(4, 0);
// Now we initialise sub-systems that need configuration from boot.py,
// or whose initialisation can be safely deferred until after running
// boot.py.
#if defined(USE_DEVICE_MODE)
// init USB device to default setting if it was not already configured
if (!(pyb_usb_flags & PYB_USB_FLAG_USB_MODE_CALLED)) {
pyb_usb_dev_init(USBD_VID, USBD_PID_CDC_MSC, USBD_MODE_CDC_MSC, NULL);
}
#endif
#if MICROPY_HW_HAS_MMA7660
// MMA accel: init and reset
accel_init();
#endif
#if MICROPY_HW_ENABLE_SERVO
// servo
servo_init();
#endif
#if MICROPY_HW_ENABLE_DAC
// DAC
dac_init();
#endif
mod_network_init();
// At this point everything is fully configured and initialised.
// Run the main script from the current directory.
if ((reset_mode == 1 || reset_mode == 3) && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
const char *main_py;
if (MP_STATE_PORT(pyb_config_main) == MP_OBJ_NULL) {
main_py = "main.py";
} else {
main_py = mp_obj_str_get_str(MP_STATE_PORT(pyb_config_main));
}
FRESULT res = f_stat(main_py, NULL);
if (res == FR_OK) {
int ret = pyexec_file(main_py);
if (ret & PYEXEC_FORCED_EXIT) {
goto soft_reset_exit;
}
if (!ret) {
flash_error(3);
}
}
}
// Main script is finished, so now go into REPL mode.
// The REPL mode can change, or it can request a soft reset.
2014-03-24 12:23:37 +00:00
for (;;) {
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
if (pyexec_raw_repl() != 0) {
break;
}
} else {
if (pyexec_friendly_repl() != 0) {
break;
}
}
}
soft_reset_exit:
// soft reset
printf("PYB: sync filesystems\n");
storage_flush();
printf("PYB: soft reboot\n");
timer_deinit();
uart_deinit();
#if MICROPY_HW_ENABLE_CAN
can_deinit();
#endif
first_soft_reset = false;
goto soft_reset;
}