circuitpython/ports/atmel-samd/spi_flash.c

765 lines
28 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016, 2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "spi_flash.h"
#include <stdint.h>
#include <string.h>
Merge tag 'v1.9.1' Fixes for stmhal USB mass storage, lwIP bindings and VFS regressions This release provides an important fix for the USB mass storage device in the stmhal port by implementing the SCSI SYNCHRONIZE_CACHE command, which is now require by some Operating Systems. There are also fixes for the lwIP bindings to improve non-blocking sockets and error codes. The VFS has some regressions fixed including the ability to statvfs the root. All changes are listed below. py core: - modbuiltins: add core-provided version of input() function - objstr: catch case of negative "maxsplit" arg to str.rsplit() - persistentcode: allow to compile with complex numbers disabled - objstr: allow to compile with obj-repr D, and unicode disabled - modsys: allow to compile with obj-repr D and PY_ATTRTUPLE disabled - provide mp_decode_uint_skip() to help reduce stack usage - makeqstrdefs.py: make script run correctly with Python 2.6 - objstringio: if created from immutable object, follow copy on write policy extmod: - modlwip: connect: for non-blocking mode, return EINPROGRESS - modlwip: fix error codes for duplicate calls to connect() - modlwip: accept: fix error code for non-blocking mode - vfs: allow to statvfs the root directory - vfs: allow "buffering" and "encoding" args to VFS's open() - modframebuf: fix signed/unsigned comparison pendantic warning lib: - libm: use isfinite instead of finitef, for C99 compatibility - utils/interrupt_char: remove support for KBD_EXCEPTION disabled tests: - basics/string_rsplit: add tests for negative "maxsplit" argument - float: convert "sys.exit()" to "raise SystemExit" - float/builtin_float_minmax: PEP8 fixes - basics: convert "sys.exit()" to "raise SystemExit" - convert remaining "sys.exit()" to "raise SystemExit" unix port: - convert to use core-provided version of built-in import() - Makefile: replace references to make with $(MAKE) windows port: - convert to use core-provided version of built-in import() qemu-arm port: - Makefile: adjust object-file lists to get correct dependencies - enable micropython.mem_*() functions to allow more tests stmhal port: - boards: enable DAC for NUCLEO_F767ZI board - add support for NUCLEO_F446RE board - pass USB handler as parameter to allow more than one USB handler - usb: use local USB handler variable in Start-of-Frame handler - usb: make state for USB device private to top-level USB driver - usbdev: for MSC implement SCSI SYNCHRONIZE_CACHE command - convert from using stmhal's input() to core provided version cc3200 port: - convert from using stmhal's input() to core provided version teensy port: - convert from using stmhal's input() to core provided version esp8266 port: - Makefile: replace references to make with $(MAKE) - Makefile: add clean-modules target - convert from using stmhal's input() to core provided version zephyr port: - modusocket: getaddrinfo: Fix mp_obj_len() usage - define MICROPY_PY_SYS_PLATFORM (to "zephyr") - machine_pin: use native Zephyr types for Zephyr API calls docs: - machine.Pin: remove out_value() method - machine.Pin: add on() and off() methods - esp8266: consistently replace Pin.high/low methods with .on/off - esp8266/quickref: polish Pin.on()/off() examples - network: move confusingly-named cc3200 Server class to its reference - uos: deconditionalize, remove minor port-specific details - uos: move cc3200 port legacy VFS mounting functions to its ref doc - machine: sort machine classes in logical order, not alphabetically - network: first step to describe standard network class interface examples: - embedding: use core-provided KeyboardInterrupt object
2017-06-20 13:56:05 -04:00
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "py/gc.h"
#include "py/obj.h"
#include "py/runtime.h"
Merge tag 'v1.9.1' Fixes for stmhal USB mass storage, lwIP bindings and VFS regressions This release provides an important fix for the USB mass storage device in the stmhal port by implementing the SCSI SYNCHRONIZE_CACHE command, which is now require by some Operating Systems. There are also fixes for the lwIP bindings to improve non-blocking sockets and error codes. The VFS has some regressions fixed including the ability to statvfs the root. All changes are listed below. py core: - modbuiltins: add core-provided version of input() function - objstr: catch case of negative "maxsplit" arg to str.rsplit() - persistentcode: allow to compile with complex numbers disabled - objstr: allow to compile with obj-repr D, and unicode disabled - modsys: allow to compile with obj-repr D and PY_ATTRTUPLE disabled - provide mp_decode_uint_skip() to help reduce stack usage - makeqstrdefs.py: make script run correctly with Python 2.6 - objstringio: if created from immutable object, follow copy on write policy extmod: - modlwip: connect: for non-blocking mode, return EINPROGRESS - modlwip: fix error codes for duplicate calls to connect() - modlwip: accept: fix error code for non-blocking mode - vfs: allow to statvfs the root directory - vfs: allow "buffering" and "encoding" args to VFS's open() - modframebuf: fix signed/unsigned comparison pendantic warning lib: - libm: use isfinite instead of finitef, for C99 compatibility - utils/interrupt_char: remove support for KBD_EXCEPTION disabled tests: - basics/string_rsplit: add tests for negative "maxsplit" argument - float: convert "sys.exit()" to "raise SystemExit" - float/builtin_float_minmax: PEP8 fixes - basics: convert "sys.exit()" to "raise SystemExit" - convert remaining "sys.exit()" to "raise SystemExit" unix port: - convert to use core-provided version of built-in import() - Makefile: replace references to make with $(MAKE) windows port: - convert to use core-provided version of built-in import() qemu-arm port: - Makefile: adjust object-file lists to get correct dependencies - enable micropython.mem_*() functions to allow more tests stmhal port: - boards: enable DAC for NUCLEO_F767ZI board - add support for NUCLEO_F446RE board - pass USB handler as parameter to allow more than one USB handler - usb: use local USB handler variable in Start-of-Frame handler - usb: make state for USB device private to top-level USB driver - usbdev: for MSC implement SCSI SYNCHRONIZE_CACHE command - convert from using stmhal's input() to core provided version cc3200 port: - convert from using stmhal's input() to core provided version teensy port: - convert from using stmhal's input() to core provided version esp8266 port: - Makefile: replace references to make with $(MAKE) - Makefile: add clean-modules target - convert from using stmhal's input() to core provided version zephyr port: - modusocket: getaddrinfo: Fix mp_obj_len() usage - define MICROPY_PY_SYS_PLATFORM (to "zephyr") - machine_pin: use native Zephyr types for Zephyr API calls docs: - machine.Pin: remove out_value() method - machine.Pin: add on() and off() methods - esp8266: consistently replace Pin.high/low methods with .on/off - esp8266/quickref: polish Pin.on()/off() examples - network: move confusingly-named cc3200 Server class to its reference - uos: deconditionalize, remove minor port-specific details - uos: move cc3200 port legacy VFS mounting functions to its ref doc - machine: sort machine classes in logical order, not alphabetically - network: first step to describe standard network class interface examples: - embedding: use core-provided KeyboardInterrupt object
2017-06-20 13:56:05 -04:00
#include "lib/oofatfs/ff.h"
#include "peripherals.h"
#include "supervisor/shared/rgb_led_status.h"
//#include "shared_dma.h"
#include "hal_gpio.h"
#include "hal_spi_m_sync.h"
#define SPI_FLASH_PART1_START_BLOCK (0x1)
#define NO_SECTOR_LOADED 0xFFFFFFFF
#define CMD_READ_JEDEC_ID 0x9f
#define CMD_READ_DATA 0x03
#define CMD_SECTOR_ERASE 0x20
// #define CMD_SECTOR_ERASE CMD_READ_JEDEC_ID
#define CMD_DISABLE_WRITE 0x04
#define CMD_ENABLE_WRITE 0x06
#define CMD_PAGE_PROGRAM 0x02
// #define CMD_PAGE_PROGRAM CMD_READ_JEDEC_ID
#define CMD_READ_STATUS 0x05
#define CMD_WRITE_STATUS_BYTE1 0x01
static bool spi_flash_is_initialised = false;
struct spi_m_sync_descriptor spi_flash_desc;
// The currently cached sector in the cache, ram or flash based.
static uint32_t current_sector;
// Track which blocks (up to 32) in the current sector currently live in the
// cache.
static uint32_t dirty_mask;
// Address of the scratch flash sector.
#define SCRATCH_SECTOR (SPI_FLASH_TOTAL_SIZE - SPI_FLASH_ERASE_SIZE)
// Enable the flash over SPI.
static void flash_enable(void) {
gpio_set_pin_level(SPI_FLASH_CS_PIN, false);
}
// Disable the flash over SPI.
static void flash_disable(void) {
gpio_set_pin_level(SPI_FLASH_CS_PIN, true);
}
// Wait until both the write enable and write in progress bits have cleared.
static bool wait_for_flash_ready(void) {
uint8_t read_status_request[2] = {CMD_READ_STATUS, 0x00};
uint8_t read_status_response[2] = {0x00, 0x00};
struct spi_xfer read_status_xfer = {read_status_request, read_status_response, 2};
int32_t status;
// Both the write enable and write in progress bits should be low.
do {
flash_enable();
status = spi_m_sync_transfer(&spi_flash_desc, &read_status_xfer);
flash_disable();
} while (status >= 0 && (read_status_response[1] & 0x3) != 0);
return status >= 0; // status is number of chars read or a negative error code.
}
// Turn on the write enable bit so we can program and erase the flash.
static bool write_enable(void) {
flash_enable();
uint8_t enable_write_request[1] = {CMD_ENABLE_WRITE};
struct spi_xfer enable_write_xfer = {enable_write_request, 0, 1};
int32_t status = spi_m_sync_transfer(&spi_flash_desc, &enable_write_xfer);
flash_disable();
return status >= 0; // status is number of chars read or a negative error code.
}
// Pack the low 24 bits of the address into a uint8_t array.
static void address_to_bytes(uint32_t address, uint8_t* bytes) {
bytes[0] = (address >> 16) & 0xff;
bytes[1] = (address >> 8) & 0xff;
bytes[2] = address & 0xff;
}
// Read data_length's worth of bytes starting at address into data.
static bool read_flash(uint32_t address, uint8_t* data, uint32_t data_length) {
if (!spi_flash_is_initialised) {
return false;
}
if (!wait_for_flash_ready()) {
return false;
}
// We can read as much as we want sequentially.
uint8_t read_data_request[4] = {CMD_READ_DATA, 0x00, 0x00, 0x00};
struct spi_xfer read_data_xfer = {read_data_request, 0, 4};
// Write the SPI flash read address into the bytes following the command byte.
address_to_bytes(address, read_data_request + 1);
flash_enable();
int32_t status = spi_m_sync_transfer(&spi_flash_desc, &read_data_xfer);
struct spi_xfer read_data_buffer_xfer = {0, data, data_length};
if (status >= 0) {
status = spi_m_sync_transfer(&spi_flash_desc, &read_data_buffer_xfer);
}
flash_disable();
return status >= 0;
}
// Writes data_length's worth of bytes starting at address from data. Assumes
// that the sector that address resides in has already been erased. So make sure
// to run erase_sector.
static bool write_flash(uint32_t address, const uint8_t* data, uint32_t data_length) {
if (!spi_flash_is_initialised) {
return false;
}
// Don't bother writing if the data is all 1s. Thats equivalent to the flash
// state after an erase.
bool all_ones = true;
for (uint16_t i = 0; i < data_length; i++) {
if (data[i] != 0xff) {
all_ones = false;
break;
}
}
if (all_ones) {
return true;
}
for (uint32_t bytes_written = 0;
bytes_written < data_length;
bytes_written += SPI_FLASH_PAGE_SIZE) {
if (!wait_for_flash_ready() || !write_enable()) {
return false;
}
int32_t status;
#ifdef SPI_FLASH_SECTOR_PROTECTION
// Print out the protection status.
// uint8_t protect_check[5] = {0x3C, 0x00, 0x00, 0x00, 0x00};
// address_to_bytes(address + bytes_written, protect_check + 1);
// flash_enable();
// status = spi_write_buffer_wait(&spi_flash_desc, protect_check, 5);
// flash_disable();
#endif
flash_enable();
uint8_t page_program_request[4] = {CMD_PAGE_PROGRAM, 0x00, 0x00, 0x00};
// Write the SPI flash write address into the bytes following the command byte.
address_to_bytes(address + bytes_written, page_program_request + 1);
struct spi_xfer page_program_xfer = {page_program_request, 0, 4};
status = spi_m_sync_transfer(&spi_flash_desc, &page_program_xfer);
if (status >= 0) {
struct spi_xfer write_data_buffer_xfer = {(uint8_t*) data + bytes_written, 0, SPI_FLASH_PAGE_SIZE};
status = spi_m_sync_transfer(&spi_flash_desc, &write_data_buffer_xfer);
}
flash_disable();
if (status < 0) {
return false;
}
}
return true;
}
static bool page_erased(uint32_t sector_address) {
// Check the first few bytes to catch the common case where there is data
// without using a bunch of memory.
uint8_t short_buffer[4];
if (read_flash(sector_address, short_buffer, 4)) {
for (uint16_t i = 0; i < 4; i++) {
if (short_buffer[i] != 0xff) {
return false;
}
}
} else {
return false;
}
// Now check the full length.
uint8_t full_buffer[FILESYSTEM_BLOCK_SIZE];
if (read_flash(sector_address, full_buffer, FILESYSTEM_BLOCK_SIZE)) {
for (uint16_t i = 0; i < FILESYSTEM_BLOCK_SIZE; i++) {
if (short_buffer[i] != 0xff) {
return false;
}
}
} else {
return false;
}
return true;
}
// Erases the given sector. Make sure you copied all of the data out of it you
// need! Also note, sector_address is really 24 bits.
static bool erase_sector(uint32_t sector_address) {
// Before we erase the sector we need to wait for any writes to finish and
// and then enable the write again.
if (!wait_for_flash_ready() || !write_enable()) {
return false;
}
uint8_t erase_request[4] = {CMD_SECTOR_ERASE, 0x00, 0x00, 0x00};
address_to_bytes(sector_address, erase_request + 1);
struct spi_xfer erase_xfer = {erase_request, 0, 4};
flash_enable();
int32_t status = spi_m_sync_transfer(&spi_flash_desc, &erase_xfer);
flash_disable();
return status >= 0;
}
// Sector is really 24 bits.
static bool copy_block(uint32_t src_address, uint32_t dest_address) {
// Copy page by page to minimize RAM buffer.
uint8_t buffer[SPI_FLASH_PAGE_SIZE];
for (uint32_t i = 0; i < FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE; i++) {
if (!read_flash(src_address + i * SPI_FLASH_PAGE_SIZE, buffer, SPI_FLASH_PAGE_SIZE)) {
return false;
}
if (!write_flash(dest_address + i * SPI_FLASH_PAGE_SIZE, buffer, SPI_FLASH_PAGE_SIZE)) {
return false;
}
}
return true;
}
void spi_flash_init(void) {
if (spi_flash_is_initialised) {
return;
}
samd_peripherals_sercom_clock_init(SPI_FLASH_SERCOM, SPI_FLASH_SERCOM_INDEX);
// Set up with defaults, then change.
spi_m_sync_init(&spi_flash_desc, SPI_FLASH_SERCOM);
hri_sercomspi_write_CTRLA_DOPO_bf(SPI_FLASH_SERCOM, SPI_FLASH_DOPO);
hri_sercomspi_write_CTRLA_DIPO_bf(SPI_FLASH_SERCOM, SPI_FLASH_DIPO);
gpio_set_pin_direction(SPI_FLASH_SCK_PIN, GPIO_DIRECTION_OUT);
gpio_set_pin_pull_mode(SPI_FLASH_SCK_PIN, GPIO_PULL_OFF);
gpio_set_pin_function(SPI_FLASH_SCK_PIN, SPI_FLASH_SCK_PIN_FUNCTION);
gpio_set_pin_direction(SPI_FLASH_MOSI_PIN, GPIO_DIRECTION_OUT);
gpio_set_pin_pull_mode(SPI_FLASH_MOSI_PIN, GPIO_PULL_OFF);
gpio_set_pin_function(SPI_FLASH_MOSI_PIN, SPI_FLASH_MOSI_PIN_FUNCTION);
gpio_set_pin_direction(SPI_FLASH_MISO_PIN, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(SPI_FLASH_MISO_PIN, GPIO_PULL_OFF);
gpio_set_pin_function(SPI_FLASH_MISO_PIN, SPI_FLASH_MISO_PIN_FUNCTION);
hri_sercomspi_write_CTRLA_DOPO_bf(SPI_FLASH_SERCOM, SPI_FLASH_DOPO);
hri_sercomspi_write_CTRLA_DIPO_bf(SPI_FLASH_SERCOM, SPI_FLASH_DIPO);
spi_m_sync_set_baudrate(&spi_flash_desc, samd_peripherals_baudrate_to_baud_reg_value(SPI_FLASH_BAUDRATE));
gpio_set_pin_direction(SPI_FLASH_CS_PIN, GPIO_DIRECTION_OUT);
// There's already a pull-up on the board.
gpio_set_pin_pull_mode(SPI_FLASH_CS_PIN, GPIO_PULL_OFF);
gpio_set_pin_function(SPI_FLASH_CS_PIN, GPIO_PIN_FUNCTION_OFF);
// Set CS high (disabled).
flash_disable();
spi_m_sync_enable(&spi_flash_desc);
// Activity LED for flash writes.
#ifdef MICROPY_HW_LED_MSC
gpio_set_pin_function(SPI_FLASH_CS_PIN, GPIO_PIN_FUNCTION_OFF);
gpio_set_pin_direction(MICROPY_HW_LED_MSC, GPIO_DIRECTION_OUT);
// There's already a pull-up on the board.
gpio_set_pin_level(MICROPY_HW_LED_MSC, false);
#endif
uint8_t jedec_id_request[4] = {CMD_READ_JEDEC_ID, 0x00, 0x00, 0x00};
uint8_t jedec_id_response[4] = {0x00, 0x00, 0x00, 0x00};
struct spi_xfer jedec_id_xfer = { jedec_id_request, jedec_id_response, 4 };
flash_enable();
spi_m_sync_transfer(&spi_flash_desc, &jedec_id_xfer);
flash_disable();
uint8_t manufacturer = jedec_id_response[1];
if ((jedec_id_response[1] == SPI_FLASH_JEDEC_MANUFACTURER
#ifdef SPI_FLASH_JEDEC_MANUFACTURER_2
|| jedec_id_response[1] == SPI_FLASH_JEDEC_MANUFACTURER_2
#endif
) &&
jedec_id_response[2] == SPI_FLASH_JEDEC_MEMORY_TYPE &&
jedec_id_response[3] == SPI_FLASH_JEDEC_CAPACITY) {
spi_flash_is_initialised = true;
} else {
// Unknown flash chip!
spi_flash_is_initialised = false;
return;
}
if ((manufacturer == SPI_FLASH_JEDEC_MANUFACTURER && SPI_FLASH_SECTOR_PROTECTION)
#ifdef SPI_FLASH_JEDEC_MANUFACTURER_2
|| (manufacturer == SPI_FLASH_JEDEC_MANUFACTURER_2 && SPI_FLASH_SECTOR_PROTECTION_2)
#endif
) {
write_enable();
// Turn off sector protection
uint8_t disable_protect_request[2] = {CMD_WRITE_STATUS_BYTE1, 0x00};
struct spi_xfer disable_protect_xfer = { disable_protect_request, 0, 4 };
flash_enable();
spi_m_sync_transfer(&spi_flash_desc, &disable_protect_xfer);
flash_disable();
}
// Turn off writes in case this is a microcontroller only reset.
uint8_t disable_write_request[1] = {CMD_DISABLE_WRITE};
struct spi_xfer disable_write_xfer = { disable_write_request, 0, 1 };
flash_enable();
spi_m_sync_transfer(&spi_flash_desc, &disable_write_xfer);
flash_disable();
wait_for_flash_ready();
current_sector = NO_SECTOR_LOADED;
dirty_mask = 0;
MP_STATE_VM(flash_ram_cache) = NULL;
spi_flash_is_initialised = true;
}
// The size of each individual block.
uint32_t spi_flash_get_block_size(void) {
return FILESYSTEM_BLOCK_SIZE;
}
// The total number of available blocks.
uint32_t spi_flash_get_block_count(void) {
// We subtract one erase sector size because we may use it as a staging area
// for writes.
return SPI_FLASH_PART1_START_BLOCK + (SPI_FLASH_TOTAL_SIZE - SPI_FLASH_ERASE_SIZE) / FILESYSTEM_BLOCK_SIZE;
}
// Flush the cache that was written to the scratch portion of flash. Only used
// when ram is tight.
static bool flush_scratch_flash(void) {
// First, copy out any blocks that we haven't touched from the sector we've
// cached.
bool copy_to_scratch_ok = true;
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
if ((dirty_mask & (1 << i)) == 0) {
copy_to_scratch_ok = copy_to_scratch_ok &&
copy_block(current_sector + i * FILESYSTEM_BLOCK_SIZE,
SCRATCH_SECTOR + i * FILESYSTEM_BLOCK_SIZE);
}
}
if (!copy_to_scratch_ok) {
// TODO(tannewt): Do more here. We opted to not erase and copy bad data
// in. We still risk losing the data written to the scratch sector.
return false;
}
// Second, erase the current sector.
erase_sector(current_sector);
// Finally, copy the new version into it.
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
copy_block(SCRATCH_SECTOR + i * FILESYSTEM_BLOCK_SIZE,
current_sector + i * FILESYSTEM_BLOCK_SIZE);
}
return true;
}
// Attempts to allocate a new set of page buffers for caching a full sector in
// ram. Each page is allocated separately so that the GC doesn't need to provide
// one huge block. We can free it as we write if we want to also.
static bool allocate_ram_cache(void) {
uint8_t blocks_per_sector = SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE;
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
MP_STATE_VM(flash_ram_cache) = gc_alloc(blocks_per_sector * pages_per_block * sizeof(uint32_t), false);
if (MP_STATE_VM(flash_ram_cache) == NULL) {
return false;
}
// Declare i and j outside the loops in case we fail to allocate everything
// we need. In that case we'll give it back.
uint8_t i = 0;
uint8_t j = 0;
bool success = true;
for (i = 0; i < blocks_per_sector; i++) {
for (j = 0; j < pages_per_block; j++) {
uint8_t *page_cache = gc_alloc(SPI_FLASH_PAGE_SIZE, false);
if (page_cache == NULL) {
success = false;
break;
}
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j] = page_cache;
}
if (!success) {
break;
}
}
// We couldn't allocate enough so give back what we got.
if (!success) {
// We add 1 so that we delete 0 when i is 1. Going to zero (i >= 0)
// would never stop because i is unsigned.
i++;
for (; i > 0; i--) {
for (; j > 0; j--) {
gc_free(MP_STATE_VM(flash_ram_cache)[(i - 1) * pages_per_block + (j - 1)]);
}
j = pages_per_block;
}
gc_free(MP_STATE_VM(flash_ram_cache));
MP_STATE_VM(flash_ram_cache) = NULL;
}
return success;
}
// Flush the cached sector from ram onto the flash. We'll free the cache unless
// keep_cache is true.
static bool flush_ram_cache(bool keep_cache) {
// First, copy out any blocks that we haven't touched from the sector
// we've cached. If we don't do this we'll erase the data during the sector
// erase below.
bool copy_to_ram_ok = true;
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
if ((dirty_mask & (1 << i)) == 0) {
for (uint8_t j = 0; j < pages_per_block; j++) {
copy_to_ram_ok = read_flash(
current_sector + (i * pages_per_block + j) * SPI_FLASH_PAGE_SIZE,
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
SPI_FLASH_PAGE_SIZE);
if (!copy_to_ram_ok) {
break;
}
}
}
if (!copy_to_ram_ok) {
break;
}
}
if (!copy_to_ram_ok) {
return false;
}
// Second, erase the current sector.
erase_sector(current_sector);
// Lastly, write all the data in ram that we've cached.
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
for (uint8_t j = 0; j < pages_per_block; j++) {
write_flash(current_sector + (i * pages_per_block + j) * SPI_FLASH_PAGE_SIZE,
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
SPI_FLASH_PAGE_SIZE);
if (!keep_cache) {
gc_free(MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j]);
}
}
}
// We're done with the cache for now so give it back.
if (!keep_cache) {
gc_free(MP_STATE_VM(flash_ram_cache));
MP_STATE_VM(flash_ram_cache) = NULL;
}
return true;
}
// Delegates to the correct flash flush method depending on the existing cache.
static void spi_flash_flush_keep_cache(bool keep_cache) {
if (current_sector == NO_SECTOR_LOADED) {
return;
}
#ifdef MICROPY_HW_LED_MSC
port_pin_set_output_level(MICROPY_HW_LED_MSC, true);
#endif
temp_status_color(ACTIVE_WRITE);
// If we've cached to the flash itself flush from there.
if (MP_STATE_VM(flash_ram_cache) == NULL) {
flush_scratch_flash();
} else {
flush_ram_cache(keep_cache);
}
current_sector = NO_SECTOR_LOADED;
clear_temp_status();
#ifdef MICROPY_HW_LED_MSC
port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
#endif
}
// External flash function used. If called externally we assume we won't need
// the cache after.
void spi_flash_flush(void) {
spi_flash_flush_keep_cache(false);
}
void flash_flush(void) {
spi_flash_flush();
}
// Builds a partition entry for the MBR.
static void build_partition(uint8_t *buf, int boot, int type,
uint32_t start_block, uint32_t num_blocks) {
buf[0] = boot;
if (num_blocks == 0) {
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
} else {
buf[1] = 0xff;
buf[2] = 0xff;
buf[3] = 0xff;
}
buf[4] = type;
if (num_blocks == 0) {
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
} else {
buf[5] = 0xff;
buf[6] = 0xff;
buf[7] = 0xff;
}
buf[8] = start_block;
buf[9] = start_block >> 8;
buf[10] = start_block >> 16;
buf[11] = start_block >> 24;
buf[12] = num_blocks;
buf[13] = num_blocks >> 8;
buf[14] = num_blocks >> 16;
buf[15] = num_blocks >> 24;
}
static int32_t convert_block_to_flash_addr(uint32_t block) {
if (SPI_FLASH_PART1_START_BLOCK <= block && block < spi_flash_get_block_count()) {
// a block in partition 1
block -= SPI_FLASH_PART1_START_BLOCK;
return block * FILESYSTEM_BLOCK_SIZE;
}
// bad block
return -1;
}
bool spi_flash_read_block(uint8_t *dest, uint32_t block) {
if (block == 0) {
// Fake the MBR so we can decide on our own partition table
for (int i = 0; i < 446; i++) {
dest[i] = 0;
}
build_partition(dest + 446, 0, 0x01 /* FAT12 */,
SPI_FLASH_PART1_START_BLOCK,
spi_flash_get_block_count() - SPI_FLASH_PART1_START_BLOCK);
build_partition(dest + 462, 0, 0, 0, 0);
build_partition(dest + 478, 0, 0, 0, 0);
build_partition(dest + 494, 0, 0, 0, 0);
dest[510] = 0x55;
dest[511] = 0xaa;
return true;
} else if (block < SPI_FLASH_PART1_START_BLOCK) {
memset(dest, 0, FILESYSTEM_BLOCK_SIZE);
return true;
} else {
// Non-MBR block, get data from flash memory.
int32_t address = convert_block_to_flash_addr(block);
if (address == -1) {
// bad block number
return false;
}
// Mask out the lower bits that designate the address within the sector.
uint32_t this_sector = address & (~(SPI_FLASH_ERASE_SIZE - 1));
uint8_t block_index = (address / FILESYSTEM_BLOCK_SIZE) % (SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE);
uint8_t mask = 1 << (block_index);
// We're reading from the currently cached sector.
if (current_sector == this_sector && (mask & dirty_mask) > 0) {
if (MP_STATE_VM(flash_ram_cache) != NULL) {
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
for (int i = 0; i < pages_per_block; i++) {
memcpy(dest + i * SPI_FLASH_PAGE_SIZE,
MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
SPI_FLASH_PAGE_SIZE);
}
return true;
} else {
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FILESYSTEM_BLOCK_SIZE;
return read_flash(scratch_address, dest, FILESYSTEM_BLOCK_SIZE);
}
}
return read_flash(address, dest, FILESYSTEM_BLOCK_SIZE);
}
}
bool spi_flash_write_block(const uint8_t *data, uint32_t block) {
if (block < SPI_FLASH_PART1_START_BLOCK) {
// Fake writing below the flash partition.
return true;
} else {
// Non-MBR block, copy to cache
int32_t address = convert_block_to_flash_addr(block);
if (address == -1) {
// bad block number
return false;
}
// Wait for any previous writes to finish.
wait_for_flash_ready();
// Mask out the lower bits that designate the address within the sector.
uint32_t this_sector = address & (~(SPI_FLASH_ERASE_SIZE - 1));
uint8_t block_index = (address / FILESYSTEM_BLOCK_SIZE) % (SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE);
uint8_t mask = 1 << (block_index);
// Flush the cache if we're moving onto a sector or we're writing the
// same block again.
if (current_sector != this_sector || (mask & dirty_mask) > 0) {
// Check to see if we'd write to an erased page. In that case we
// can write directly.
if (page_erased(address)) {
return write_flash(address, data, FILESYSTEM_BLOCK_SIZE);
}
if (current_sector != NO_SECTOR_LOADED) {
spi_flash_flush_keep_cache(true);
}
if (MP_STATE_VM(flash_ram_cache) == NULL && !allocate_ram_cache()) {
erase_sector(SCRATCH_SECTOR);
wait_for_flash_ready();
}
current_sector = this_sector;
dirty_mask = 0;
}
dirty_mask |= mask;
// Copy the block to the appropriate cache.
if (MP_STATE_VM(flash_ram_cache) != NULL) {
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
for (int i = 0; i < pages_per_block; i++) {
memcpy(MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
data + i * SPI_FLASH_PAGE_SIZE,
SPI_FLASH_PAGE_SIZE);
}
return true;
} else {
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FILESYSTEM_BLOCK_SIZE;
return write_flash(scratch_address, data, FILESYSTEM_BLOCK_SIZE);
}
}
}
mp_uint_t spi_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!spi_flash_read_block(dest + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
mp_uint_t spi_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!spi_flash_write_block(src + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
/******************************************************************************/
// MicroPython bindings
//
// Expose the flash as an object with the block protocol.
// there is a singleton Flash object
STATIC const mp_obj_base_t spi_flash_obj = {&spi_flash_type};
STATIC mp_obj_t spi_flash_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return singleton object
return (mp_obj_t)&spi_flash_obj;
}
STATIC mp_obj_t spi_flash_obj_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = spi_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FILESYSTEM_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_readblocks_obj, spi_flash_obj_readblocks);
STATIC mp_obj_t spi_flash_obj_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = spi_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FILESYSTEM_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_writeblocks_obj, spi_flash_obj_writeblocks);
STATIC mp_obj_t spi_flash_obj_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case BP_IOCTL_INIT: spi_flash_init(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_DEINIT: spi_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
case BP_IOCTL_SYNC: spi_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(spi_flash_get_block_count());
case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(spi_flash_get_block_size());
default: return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_ioctl_obj, spi_flash_obj_ioctl);
STATIC const mp_rom_map_elem_t spi_flash_obj_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&spi_flash_obj_readblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&spi_flash_obj_writeblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&spi_flash_obj_ioctl_obj) },
};
STATIC MP_DEFINE_CONST_DICT(spi_flash_obj_locals_dict, spi_flash_obj_locals_dict_table);
const mp_obj_type_t spi_flash_type = {
{ &mp_type_type },
.name = MP_QSTR_SPIFlash,
.make_new = spi_flash_obj_make_new,
.locals_dict = (mp_obj_t)&spi_flash_obj_locals_dict,
};
void flash_init_vfs(fs_user_mount_t *vfs) {
vfs->base.type = &mp_fat_vfs_type;
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL;
vfs->fatfs.drv = vfs;
vfs->fatfs.part = 1; // flash filesystem lives on first partition
vfs->readblocks[0] = (mp_obj_t)&spi_flash_obj_readblocks_obj;
vfs->readblocks[1] = (mp_obj_t)&spi_flash_obj;
vfs->readblocks[2] = (mp_obj_t)spi_flash_read_blocks; // native version
vfs->writeblocks[0] = (mp_obj_t)&spi_flash_obj_writeblocks_obj;
vfs->writeblocks[1] = (mp_obj_t)&spi_flash_obj;
vfs->writeblocks[2] = (mp_obj_t)spi_flash_write_blocks; // native version
vfs->u.ioctl[0] = (mp_obj_t)&spi_flash_obj_ioctl_obj;
vfs->u.ioctl[1] = (mp_obj_t)&spi_flash_obj;
}