atmel-samd: Rework SPI flash defines for clarity.

Also add sector protection support for the SAMD Xplained board.
This commit is contained in:
Scott Shawcroft 2017-05-12 14:47:39 -07:00
parent 7ea76e0889
commit e1a6f6d584
11 changed files with 205 additions and 83 deletions

View File

@ -73,6 +73,7 @@ INC += $(addprefix -Iasf/sam0/,\
utils/preprocessor \
)
INC += -Iasf/thirdparty/CMSIS/Include
INC += -Iboards
INC += -Iboards/$(BOARD)/
INC += -Ifreetouch/
INC += -I$(BUILD)

View File

@ -126,7 +126,7 @@ bool vfs_unload(bool unload)
//!
Ctrl_status vfs_usb_read_10(uint32_t addr, volatile uint16_t nb_sector)
{
uint8_t sector_buffer[FLASH_BLOCK_SIZE];
uint8_t sector_buffer[FILESYSTEM_BLOCK_SIZE];
for (uint16_t sector = 0; sector < nb_sector; sector++) {
DRESULT result = disk_read(VFS_INDEX, sector_buffer, addr + sector, 1);
if (result == RES_PARERR) {
@ -135,7 +135,7 @@ Ctrl_status vfs_usb_read_10(uint32_t addr, volatile uint16_t nb_sector)
if (result == RES_ERROR) {
return CTRL_FAIL;
}
if (!udi_msc_trans_block(true, sector_buffer, FLASH_BLOCK_SIZE, NULL)) {
if (!udi_msc_trans_block(true, sector_buffer, FILESYSTEM_BLOCK_SIZE, NULL)) {
return CTRL_FAIL; // transfer aborted
}
}
@ -155,9 +155,9 @@ Ctrl_status vfs_usb_read_10(uint32_t addr, volatile uint16_t nb_sector)
//!
Ctrl_status vfs_usb_write_10(uint32_t addr, volatile uint16_t nb_sector)
{
uint8_t sector_buffer[FLASH_BLOCK_SIZE];
uint8_t sector_buffer[FILESYSTEM_BLOCK_SIZE];
for (uint16_t sector = 0; sector < nb_sector; sector++) {
if (!udi_msc_trans_block(false, sector_buffer, FLASH_BLOCK_SIZE, NULL)) {
if (!udi_msc_trans_block(false, sector_buffer, FILESYSTEM_BLOCK_SIZE, NULL)) {
return CTRL_FAIL; // transfer aborted
}
uint32_t sector_address = addr + sector;
@ -174,13 +174,13 @@ Ctrl_status vfs_usb_write_10(uint32_t addr, volatile uint16_t nb_sector)
volatile uint16_t x = addr;
(void) x;
#if _MAX_SS != _MIN_SS
if (vfs->ssize == FLASH_BLOCK_SIZE) {
if (vfs->ssize == FILESYSTEM_BLOCK_SIZE) {
#else
// The compiler can optimize this away.
if (_MAX_SS == FLASH_BLOCK_SIZE) {
if (_MAX_SS == FILESYSTEM_BLOCK_SIZE) {
#endif
if (sector_address == vfs->fatfs.winsect && sector_address > 0) {
memcpy(vfs->fatfs.win, sector_buffer, FLASH_BLOCK_SIZE);
memcpy(vfs->fatfs.win, sector_buffer, FILESYSTEM_BLOCK_SIZE);
}
}
}

View File

@ -38,4 +38,6 @@
#define BOARD_FLASH_SIZE (0x00040000 - 0x2000)
#include "flash_S25FL216K.h"
#define CALIBRATE_CRYSTALLESS 1

View File

@ -26,3 +26,5 @@
#include "spi_flash.h"
#define BOARD_FLASH_SIZE (0x00040000 - 0x2000)
#include "flash_S25FL216K.h"

View File

@ -0,0 +1,52 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef __MICROPY_INCLUDED_ATMEL_SAMD_BOARD_FLASH_AT25DF081A_H__
#define __MICROPY_INCLUDED_ATMEL_SAMD_BOARD_FLASH_AT25DF081A_H__
// Settings for the Adesto Tech AT25DF081A 1MiB SPI flash. Its on the SAMD21
// Xplained board.
// Datasheet: https://www.adestotech.com/wp-content/uploads/doc8715.pdf
// The total flash size in bytes.
#define SPI_FLASH_TOTAL_SIZE (1 << 20) // 2 MiB
// The size of the smallest erase unit thats erased with command 0x20.
#define SPI_FLASH_ERASE_SIZE (1 << 12) // 4 KiB
// The size of a page that is programmed with page program command 0x02.
#define SPI_FLASH_PAGE_SIZE (256) // 256 bytes
// These are the first three response bytes to the JEDEC ID command 0x9f that is
// used to confirm we're talking to the flash we expect. The data sheet calls
// them something else so we just match it byte for byte.
#define SPI_FLASH_JEDEC_MANUFACTURER 0x1F
#define SPI_FLASH_JEDEC_MEMORY_TYPE 0x45
#define SPI_FLASH_JEDEC_CAPACITY 0x01
#define SPI_FLASH_SECTOR_PROTECTION
#endif // __MICROPY_INCLUDED_ATMEL_SAMD_BOARD_FLASH_AT25DF081A_H__

View File

@ -0,0 +1,48 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef __MICROPY_INCLUDED_ATMEL_SAMD_BOARD_FLASH_S25FL216K_H__
#define __MICROPY_INCLUDED_ATMEL_SAMD_BOARD_FLASH_S25FL216K_H__
// Settings for the Cypress (was Spansion) S25FL216K 2MiB SPI flash.
// Datasheet: http://www.cypress.com/file/197346/download
// The total flash size in bytes.
#define SPI_FLASH_TOTAL_SIZE (1 << 21) // 2 MiB
// The size of the smallest erase unit thats erased with command 0x20.
#define SPI_FLASH_ERASE_SIZE (1 << 12) // 4 KiB
// The size of a page that is programmed with page program command 0x02.
#define SPI_FLASH_PAGE_SIZE (256) // 256 bytes
// These are the first three response bytes to the JEDEC ID command 0x9f that is
// used to confirm we're talking to the flash we expect.
#define SPI_FLASH_JEDEC_MANUFACTURER 0x01
#define SPI_FLASH_JEDEC_MEMORY_TYPE 0x40
#define SPI_FLASH_JEDEC_CAPACITY 0x15
#endif // __MICROPY_INCLUDED_ATMEL_SAMD_BOARD_FLASH_S25FL216K_H__

View File

@ -28,3 +28,5 @@
#include "spi_flash.h"
#define BOARD_FLASH_SIZE (0x00040000 - 0x2000)
#include "flash_S25FL216K.h"

View File

@ -43,7 +43,7 @@
#define INTERNAL_FLASH_MEM_SEG1_START_ADDR (0x00040000 - TOTAL_INTERNAL_FLASH_SIZE)
#define INTERNAL_FLASH_PART1_START_BLOCK (0x1)
#define INTERNAL_FLASH_PART1_NUM_BLOCKS (TOTAL_INTERNAL_FLASH_SIZE / INTERNAL_FLASH_BLOCK_SIZE)
#define INTERNAL_FLASH_PART1_NUM_BLOCKS (TOTAL_INTERNAL_FLASH_SIZE / FILESYSTEM_BLOCK_SIZE)
void internal_flash_init(void) {
// Activity LED for flash writes.
@ -58,7 +58,7 @@ void internal_flash_init(void) {
}
uint32_t internal_flash_get_block_size(void) {
return INTERNAL_FLASH_BLOCK_SIZE;
return FILESYSTEM_BLOCK_SIZE;
}
uint32_t internal_flash_get_block_count(void) {
@ -112,7 +112,7 @@ static int32_t convert_block_to_flash_addr(uint32_t block) {
if (INTERNAL_FLASH_PART1_START_BLOCK <= block && block < INTERNAL_FLASH_PART1_START_BLOCK + INTERNAL_FLASH_PART1_NUM_BLOCKS) {
// a block in partition 1
block -= INTERNAL_FLASH_PART1_START_BLOCK;
return INTERNAL_FLASH_MEM_SEG1_START_ADDR + block * INTERNAL_FLASH_BLOCK_SIZE;
return INTERNAL_FLASH_MEM_SEG1_START_ADDR + block * FILESYSTEM_BLOCK_SIZE;
}
// bad block
return -1;
@ -147,7 +147,7 @@ bool internal_flash_read_block(uint8_t *dest, uint32_t block) {
enum status_code error_code;
// A block is made up of multiple pages. Read each page
// sequentially.
for (int i = 0; i < INTERNAL_FLASH_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) {
for (int i = 0; i < FILESYSTEM_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) {
do
{
error_code = nvm_read_buffer(src + i * NVMCTRL_PAGE_SIZE,
@ -195,7 +195,7 @@ bool internal_flash_write_block(const uint8_t *src, uint32_t block) {
// A block is made up of multiple pages. Write each page
// sequentially.
for (int i = 0; i < INTERNAL_FLASH_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) {
for (int i = 0; i < FILESYSTEM_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) {
do
{
error_code = nvm_write_buffer(dest + i * NVMCTRL_PAGE_SIZE,
@ -216,7 +216,7 @@ bool internal_flash_write_block(const uint8_t *src, uint32_t block) {
mp_uint_t internal_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!internal_flash_read_block(dest + i * INTERNAL_FLASH_BLOCK_SIZE, block_num + i)) {
if (!internal_flash_read_block(dest + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
@ -225,7 +225,7 @@ mp_uint_t internal_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t
mp_uint_t internal_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!internal_flash_write_block(src + i * INTERNAL_FLASH_BLOCK_SIZE, block_num + i)) {
if (!internal_flash_write_block(src + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
@ -251,7 +251,7 @@ STATIC mp_obj_t internal_flash_obj_make_new(const mp_obj_type_t *type, size_t n_
STATIC mp_obj_t internal_flash_obj_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = internal_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
mp_uint_t ret = internal_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FILESYSTEM_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_readblocks_obj, internal_flash_obj_readblocks);
@ -259,7 +259,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_readblocks_obj, internal_fla
STATIC mp_obj_t internal_flash_obj_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = internal_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
mp_uint_t ret = internal_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FILESYSTEM_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_writeblocks_obj, internal_flash_obj_writeblocks);

View File

@ -32,8 +32,6 @@
#define FLASH_ROOT_POINTERS
#define INTERNAL_FLASH_BLOCK_SIZE (512)
#define INTERNAL_FLASH_SYSTICK_MASK (0x1ff) // 512ms
#define INTERNAL_FLASH_IDLE_TICK(tick) (((tick) & INTERNAL_FLASH_SYSTICK_MASK) == 2)

View File

@ -76,7 +76,7 @@
// size.
// #define MICROPY_FATFS_MAX_SS (4096)
#define FLASH_BLOCK_SIZE (512)
#define FILESYSTEM_BLOCK_SIZE (512)
#define MICROPY_VFS_FAT (1)
#define MICROPY_PY_MACHINE (1)

View File

@ -52,20 +52,12 @@
#define CMD_PAGE_PROGRAM 0x02
// #define CMD_PAGE_PROGRAM CMD_READ_JEDEC_ID
#define CMD_READ_STATUS 0x05
#define CMD_WRITE_STATUS_BYTE1 0x01
static bool spi_flash_is_initialised = false;
struct spi_module spi_flash_instance;
// The total size of the flash.
static uint32_t flash_size;
// The erase sector size.
static uint32_t sector_size;
// The page size. Its the maximum number of bytes that can be written at once.
static uint32_t page_size;
// The currently cached sector in the cache, ram or flash based.
static uint32_t current_sector;
@ -74,7 +66,7 @@ static uint32_t current_sector;
static uint32_t dirty_mask;
// Address of the scratch flash sector.
#define SCRATCH_SECTOR (flash_size - sector_size)
#define SCRATCH_SECTOR (SPI_FLASH_TOTAL_SIZE - SPI_FLASH_ERASE_SIZE)
// Enable the flash over SPI.
static void flash_enable(void) {
@ -92,7 +84,7 @@ static bool wait_for_flash_ready(void) {
uint8_t response[2] = {0x00, 0x01};
enum status_code status = STATUS_OK;
// Both the write enable and write in progress bits should be low.
while (status == STATUS_OK && ((response[1] & 0x1) == 1 || (response[1] & 0x2) == 2)) {
while (status == STATUS_OK && (response[1] & 0x3) != 0) {
flash_enable();
status = spi_transceive_buffer_wait(&spi_flash_instance, status_request, response, 2);
flash_disable();
@ -118,7 +110,12 @@ static void address_to_bytes(uint32_t address, uint8_t* bytes) {
// Read data_length's worth of bytes starting at address into data.
static bool read_flash(uint32_t address, uint8_t* data, uint32_t data_length) {
wait_for_flash_ready();
if (!spi_flash_is_initialised) {
return false;
}
if (!wait_for_flash_ready()) {
return false;
}
enum status_code status;
// We can read as much as we want sequentially.
uint8_t read_request[4] = {CMD_READ_DATA, 0x00, 0x00, 0x00};
@ -136,22 +133,30 @@ static bool read_flash(uint32_t address, uint8_t* data, uint32_t data_length) {
// that the sector that address resides in has already been erased. So make sure
// to run erase_sector.
static bool write_flash(uint32_t address, const uint8_t* data, uint32_t data_length) {
if (page_size == 0) {
if (!spi_flash_is_initialised) {
return false;
}
for (uint32_t bytes_written = 0;
bytes_written < data_length;
bytes_written += page_size) {
bytes_written += SPI_FLASH_PAGE_SIZE) {
if (!wait_for_flash_ready() || !write_enable()) {
return false;
}
enum status_code status;
// Print out the protection status.
uint8_t protect_check[5] = {0x3C, 0x00, 0x00, 0x00, 0x00};
address_to_bytes(address + bytes_written, protect_check + 1);
flash_enable();
status = spi_write_buffer_wait(&spi_flash_instance, protect_check, 5);
flash_disable();
flash_enable();
uint8_t command[4] = {CMD_PAGE_PROGRAM, 0x00, 0x00, 0x00};
address_to_bytes(address + bytes_written, command + 1);
enum status_code status;
status = spi_write_buffer_wait(&spi_flash_instance, command, 4);
if (status == STATUS_OK) {
status = shared_dma_write(spi_flash_instance.hw, data + bytes_written, page_size);
status = shared_dma_write(spi_flash_instance.hw, data + bytes_written, SPI_FLASH_PAGE_SIZE);
}
flash_disable();
if (status != STATUS_OK) {
@ -182,12 +187,12 @@ static bool erase_sector(uint32_t sector_address) {
// Sector is really 24 bits.
static bool copy_block(uint32_t src_address, uint32_t dest_address) {
// Copy page by page to minimize RAM buffer.
uint8_t buffer[page_size];
for (uint32_t i = 0; i < FLASH_BLOCK_SIZE / page_size; i++) {
if (!read_flash(src_address + i * page_size, buffer, page_size)) {
uint8_t buffer[SPI_FLASH_PAGE_SIZE];
for (uint32_t i = 0; i < FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE; i++) {
if (!read_flash(src_address + i * SPI_FLASH_PAGE_SIZE, buffer, SPI_FLASH_PAGE_SIZE)) {
return false;
}
if (!write_flash(dest_address + i * page_size, buffer, page_size)) {
if (!write_flash(dest_address + i * SPI_FLASH_PAGE_SIZE, buffer, SPI_FLASH_PAGE_SIZE)) {
return false;
}
}
@ -226,15 +231,27 @@ void spi_flash_init(void) {
flash_enable();
spi_transceive_buffer_wait(&spi_flash_instance, jedec_id_request, response, 4);
flash_disable();
if (response[1] == 0x01 && response[2] == 0x40 && response[3] == 0x15) {
flash_size = 1 << 21; // 2 MiB
sector_size = 1 << 12; // 4 KiB
page_size = 256; // 256 bytes
if (response[1] == SPI_FLASH_JEDEC_MANUFACTURER &&
response[2] == SPI_FLASH_JEDEC_MEMORY_TYPE &&
response[3] == SPI_FLASH_JEDEC_CAPACITY) {
spi_flash_is_initialised = true;
} else {
// Unknown flash chip!
flash_size = 0;
spi_flash_is_initialised = false;
return;
}
#ifdef SPI_FLASH_SECTOR_PROTECTION
write_enable();
// Turn off sector protection
uint8_t disable_protect_request[2] = {CMD_WRITE_STATUS_BYTE1, 0x00};
uint8_t disable_protect_response[2] = {0x00, 0x00};
flash_enable();
spi_transceive_buffer_wait(&spi_flash_instance, disable_protect_request, disable_protect_response, 2);
flash_disable();
#endif
// Turn off writes in case this is a microcontroller only reset.
uint8_t disable_write_request[1] = {CMD_DISABLE_WRITE};
uint8_t disable_response[1] = {0x00};
@ -254,14 +271,14 @@ void spi_flash_init(void) {
// The size of each individual block.
uint32_t spi_flash_get_block_size(void) {
return FLASH_BLOCK_SIZE;
return FILESYSTEM_BLOCK_SIZE;
}
// The total number of available blocks.
uint32_t spi_flash_get_block_count(void) {
// We subtract one erase sector size because we may use it as a staging area
// for writes.
return SPI_FLASH_PART1_START_BLOCK + (flash_size - sector_size) / FLASH_BLOCK_SIZE;
return SPI_FLASH_PART1_START_BLOCK + (SPI_FLASH_TOTAL_SIZE - SPI_FLASH_ERASE_SIZE) / FILESYSTEM_BLOCK_SIZE;
}
// Flush the cache that was written to the scratch portion of flash. Only used
@ -270,11 +287,11 @@ static bool flush_scratch_flash(void) {
// First, copy out any blocks that we haven't touched from the sector we've
// cached.
bool copy_to_scratch_ok = true;
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
if ((dirty_mask & (1 << i)) == 0) {
copy_to_scratch_ok = copy_to_scratch_ok &&
copy_block(current_sector + i * FLASH_BLOCK_SIZE,
SCRATCH_SECTOR + i * FLASH_BLOCK_SIZE);
copy_block(current_sector + i * FILESYSTEM_BLOCK_SIZE,
SCRATCH_SECTOR + i * FILESYSTEM_BLOCK_SIZE);
}
}
if (!copy_to_scratch_ok) {
@ -285,9 +302,9 @@ static bool flush_scratch_flash(void) {
// Second, erase the current sector.
erase_sector(current_sector);
// Finally, copy the new version into it.
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
copy_block(SCRATCH_SECTOR + i * FLASH_BLOCK_SIZE,
current_sector + i * FLASH_BLOCK_SIZE);
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
copy_block(SCRATCH_SECTOR + i * FILESYSTEM_BLOCK_SIZE,
current_sector + i * FILESYSTEM_BLOCK_SIZE);
}
return true;
}
@ -296,8 +313,8 @@ static bool flush_scratch_flash(void) {
// ram. Each page is allocated separately so that the GC doesn't need to provide
// one huge block. We can free it as we write if we want to also.
static bool allocate_ram_cache(void) {
uint8_t blocks_per_sector = sector_size / FLASH_BLOCK_SIZE;
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
uint8_t blocks_per_sector = SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE;
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
MP_STATE_VM(flash_ram_cache) = gc_alloc(blocks_per_sector * pages_per_block * sizeof(uint32_t), false);
if (MP_STATE_VM(flash_ram_cache) == NULL) {
return false;
@ -309,7 +326,7 @@ static bool allocate_ram_cache(void) {
bool success = true;
for (i = 0; i < blocks_per_sector; i++) {
for (j = 0; j < pages_per_block; j++) {
uint8_t *page_cache = gc_alloc(page_size, false);
uint8_t *page_cache = gc_alloc(SPI_FLASH_PAGE_SIZE, false);
if (page_cache == NULL) {
success = false;
break;
@ -344,14 +361,14 @@ static bool flush_ram_cache(bool keep_cache) {
// we've cached. If we don't do this we'll erase the data during the sector
// erase below.
bool copy_to_ram_ok = true;
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
if ((dirty_mask & (1 << i)) == 0) {
for (uint8_t j = 0; j < pages_per_block; j++) {
copy_to_ram_ok = read_flash(
current_sector + (i * pages_per_block + j) * page_size,
current_sector + (i * pages_per_block + j) * SPI_FLASH_PAGE_SIZE,
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
page_size);
SPI_FLASH_PAGE_SIZE);
if (!copy_to_ram_ok) {
break;
}
@ -368,11 +385,11 @@ static bool flush_ram_cache(bool keep_cache) {
// Second, erase the current sector.
erase_sector(current_sector);
// Lastly, write all the data in ram that we've cached.
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
for (uint8_t j = 0; j < pages_per_block; j++) {
write_flash(current_sector + (i * pages_per_block + j) * page_size,
write_flash(current_sector + (i * pages_per_block + j) * SPI_FLASH_PAGE_SIZE,
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
page_size);
SPI_FLASH_PAGE_SIZE);
if (!keep_cache) {
gc_free(MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j]);
}
@ -460,7 +477,7 @@ static int32_t convert_block_to_flash_addr(uint32_t block) {
if (SPI_FLASH_PART1_START_BLOCK <= block && block < spi_flash_get_block_count()) {
// a block in partition 1
block -= SPI_FLASH_PART1_START_BLOCK;
return block * FLASH_BLOCK_SIZE;
return block * FILESYSTEM_BLOCK_SIZE;
}
// bad block
return -1;
@ -485,7 +502,7 @@ bool spi_flash_read_block(uint8_t *dest, uint32_t block) {
return true;
} else if (block < SPI_FLASH_PART1_START_BLOCK) {
memset(dest, 0, FLASH_BLOCK_SIZE);
memset(dest, 0, FILESYSTEM_BLOCK_SIZE);
return true;
} else {
// Non-MBR block, get data from flash memory.
@ -496,25 +513,25 @@ bool spi_flash_read_block(uint8_t *dest, uint32_t block) {
}
// Mask out the lower bits that designate the address within the sector.
uint32_t this_sector = address & (~(sector_size - 1));
uint8_t block_index = (address / FLASH_BLOCK_SIZE) % (sector_size / FLASH_BLOCK_SIZE);
uint32_t this_sector = address & (~(SPI_FLASH_ERASE_SIZE - 1));
uint8_t block_index = (address / FILESYSTEM_BLOCK_SIZE) % (SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE);
uint8_t mask = 1 << (block_index);
// We're reading from the currently cached sector.
if (current_sector == this_sector && (mask & dirty_mask) > 0) {
if (MP_STATE_VM(flash_ram_cache) != NULL) {
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
for (int i = 0; i < pages_per_block; i++) {
memcpy(dest + i * page_size,
memcpy(dest + i * SPI_FLASH_PAGE_SIZE,
MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
page_size);
SPI_FLASH_PAGE_SIZE);
}
return true;
} else {
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FLASH_BLOCK_SIZE;
return read_flash(scratch_address, dest, FLASH_BLOCK_SIZE);
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FILESYSTEM_BLOCK_SIZE;
return read_flash(scratch_address, dest, FILESYSTEM_BLOCK_SIZE);
}
}
return read_flash(address, dest, FLASH_BLOCK_SIZE);
return read_flash(address, dest, FILESYSTEM_BLOCK_SIZE);
}
}
@ -532,8 +549,8 @@ bool spi_flash_write_block(const uint8_t *data, uint32_t block) {
// Wait for any previous writes to finish.
wait_for_flash_ready();
// Mask out the lower bits that designate the address within the sector.
uint32_t this_sector = address & (~(sector_size - 1));
uint8_t block_index = (address / FLASH_BLOCK_SIZE) % (sector_size / FLASH_BLOCK_SIZE);
uint32_t this_sector = address & (~(SPI_FLASH_ERASE_SIZE - 1));
uint8_t block_index = (address / FILESYSTEM_BLOCK_SIZE) % (SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE);
uint8_t mask = 1 << (block_index);
// Flush the cache if we're moving onto a sector our we're writing the
// same block again.
@ -551,23 +568,23 @@ bool spi_flash_write_block(const uint8_t *data, uint32_t block) {
dirty_mask |= mask;
// Copy the block to the appropriate cache.
if (MP_STATE_VM(flash_ram_cache) != NULL) {
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
for (int i = 0; i < pages_per_block; i++) {
memcpy(MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
data + i * page_size,
page_size);
data + i * SPI_FLASH_PAGE_SIZE,
SPI_FLASH_PAGE_SIZE);
}
return true;
} else {
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FLASH_BLOCK_SIZE;
return write_flash(scratch_address, data, FLASH_BLOCK_SIZE);
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FILESYSTEM_BLOCK_SIZE;
return write_flash(scratch_address, data, FILESYSTEM_BLOCK_SIZE);
}
}
}
mp_uint_t spi_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!spi_flash_read_block(dest + i * FLASH_BLOCK_SIZE, block_num + i)) {
if (!spi_flash_read_block(dest + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
@ -576,7 +593,7 @@ mp_uint_t spi_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_
mp_uint_t spi_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!spi_flash_write_block(src + i * FLASH_BLOCK_SIZE, block_num + i)) {
if (!spi_flash_write_block(src + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
@ -602,7 +619,7 @@ STATIC mp_obj_t spi_flash_obj_make_new(const mp_obj_type_t *type, size_t n_args,
STATIC mp_obj_t spi_flash_obj_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = spi_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
mp_uint_t ret = spi_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FILESYSTEM_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_readblocks_obj, spi_flash_obj_readblocks);
@ -610,7 +627,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_readblocks_obj, spi_flash_obj_rea
STATIC mp_obj_t spi_flash_obj_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = spi_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
mp_uint_t ret = spi_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FILESYSTEM_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_writeblocks_obj, spi_flash_obj_writeblocks);