circuitpython/ports/nrf/common-hal/busio/SPI.c

334 lines
11 KiB
C
Raw Normal View History

/*
* SPI Master library for nRF5x.
*
* Copyright (c) 2019 Dan Halbert for Adafruit Industries
* Copyright (c) 2018 Artur Pacholec
* Copyright (c) 2017 hathach
* Copyright (c) 2016 Sandeep Mistry All right reserved.
* Copyright (c) 2015 Arduino LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "shared-bindings/busio/SPI.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "nrfx_spim.h"
#include "nrf_gpio.h"
STATIC spim_peripheral_t spim_peripherals[] = {
#if NRFX_CHECK(NRFX_SPIM3_ENABLED)
// SPIM3 exists only on nRF52840 and supports 32MHz max. All other SPIM's are only 8MHz max.
// Allocate SPIM3 first.
{ .spim = NRFX_SPIM_INSTANCE(3),
.max_frequency_MHz = 32,
.max_xfer_size = SPIM3_EASYDMA_MAXCNT_SIZE,
},
#endif
#if NRFX_CHECK(NRFX_SPIM2_ENABLED)
// SPIM2 is not shared with a TWIM, so allocate before the shared ones.
{ .spim = NRFX_SPIM_INSTANCE(2),
.max_frequency_MHz = 8,
.max_xfer_size = SPIM2_EASYDMA_MAXCNT_SIZE,
},
#endif
#if NRFX_CHECK(NRFX_SPIM1_ENABLED)
// SPIM1 and TWIM1 share an address.
{ .spim = NRFX_SPIM_INSTANCE(1),
.max_frequency_MHz = 8,
.max_xfer_size = SPIM1_EASYDMA_MAXCNT_SIZE,
},
#endif
#if NRFX_CHECK(NRFX_SPIM0_ENABLED)
// SPIM0 and TWIM0 share an address.
{ .spim = NRFX_SPIM_INSTANCE(0),
.max_frequency_MHz = 8,
.max_xfer_size = SPIM0_EASYDMA_MAXCNT_SIZE,
},
#endif
};
STATIC bool never_reset[MP_ARRAY_SIZE(spim_peripherals)];
2018-09-25 15:12:10 -04:00
void spi_reset(void) {
for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) {
if (never_reset[i]) {
continue;
}
2020-01-03 18:14:37 -05:00
nrfx_spim_uninit(&spim_peripherals[i].spim);
2018-09-25 15:12:10 -04:00
}
}
void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) {
for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) {
if (self->spim_peripheral == &spim_peripherals[i]) {
never_reset[i] = true;
never_reset_pin_number(self->clock_pin_number);
never_reset_pin_number(self->MOSI_pin_number);
never_reset_pin_number(self->MISO_pin_number);
break;
}
}
}
2018-10-02 21:06:40 -04:00
// Convert frequency to clock-speed-dependent value. Choose the next lower baudrate if in between
// available baudrates.
static nrf_spim_frequency_t baudrate_to_spim_frequency(const uint32_t baudrate) {
static const struct {
const uint32_t boundary;
nrf_spim_frequency_t spim_frequency;
} baudrate_map[] = {
#ifdef SPIM_FREQUENCY_FREQUENCY_M32
2018-10-02 21:06:40 -04:00
{ 32000000, NRF_SPIM_FREQ_32M },
#endif
#ifdef SPIM_FREQUENCY_FREQUENCY_M16
2018-10-02 21:06:40 -04:00
{ 16000000, NRF_SPIM_FREQ_16M },
#endif
2018-10-02 21:06:40 -04:00
{ 8000000, NRF_SPIM_FREQ_8M },
{ 4000000, NRF_SPIM_FREQ_4M },
{ 2000000, NRF_SPIM_FREQ_2M },
{ 1000000, NRF_SPIM_FREQ_1M },
{ 500000, NRF_SPIM_FREQ_500K },
{ 250000, NRF_SPIM_FREQ_250K },
{ 0, NRF_SPIM_FREQ_125K },
};
size_t i = 0;
uint32_t boundary;
do {
boundary = baudrate_map[i].boundary;
if (baudrate >= boundary) {
return baudrate_map[i].spim_frequency;
}
i++;
} while (boundary != 0);
2018-10-02 21:06:40 -04:00
// Should not get here.
return 0;
}
void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi, const mcu_pin_obj_t * miso) {
// Find a free instance.
self->spim_peripheral = NULL;
for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) {
if ((spim_peripherals[i].spim.p_reg->ENABLE & SPIM_ENABLE_ENABLE_Msk) == 0) {
self->spim_peripheral = &spim_peripherals[i];
break;
}
}
if (self->spim_peripheral == NULL) {
mp_raise_ValueError(translate("All SPI peripherals are in use"));
}
2019-12-17 09:39:52 -05:00
nrfx_spim_config_t config = NRFX_SPIM_DEFAULT_CONFIG(NRFX_SPIM_PIN_NOT_USED, NRFX_SPIM_PIN_NOT_USED,
NRFX_SPIM_PIN_NOT_USED, NRFX_SPIM_PIN_NOT_USED);
config.frequency = NRF_SPIM_FREQ_8M;
config.sck_pin = clock->number;
2018-08-31 17:46:03 -04:00
self->clock_pin_number = clock->number;
claim_pin(clock);
2018-08-31 17:46:03 -04:00
if (mosi != (mcu_pin_obj_t*)&mp_const_none_obj) {
config.mosi_pin = mosi->number;
2018-08-31 17:46:03 -04:00
self->MOSI_pin_number = mosi->number;
claim_pin(mosi);
} else {
self->MOSI_pin_number = NO_PIN;
}
2018-08-31 17:46:03 -04:00
if (miso != (mcu_pin_obj_t*)&mp_const_none_obj) {
config.miso_pin = miso->number;
2018-08-31 17:46:03 -04:00
self->MISO_pin_number = mosi->number;
claim_pin(miso);
} else {
self->MISO_pin_number = NO_PIN;
}
nrfx_err_t err = nrfx_spim_init(&self->spim_peripheral->spim, &config, NULL, NULL);
2018-08-31 17:46:03 -04:00
if (err != NRFX_SUCCESS) {
common_hal_busio_spi_deinit(self);
mp_raise_OSError(MP_EIO);
2018-08-31 17:46:03 -04:00
}
}
bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) {
2018-08-31 17:46:03 -04:00
return self->clock_pin_number == NO_PIN;
}
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
if (common_hal_busio_spi_deinited(self))
return;
nrfx_spim_uninit(&self->spim_peripheral->spim);
2018-08-31 17:46:03 -04:00
reset_pin_number(self->clock_pin_number);
reset_pin_number(self->MOSI_pin_number);
reset_pin_number(self->MISO_pin_number);
}
bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
2018-10-02 21:06:40 -04:00
// nrf52 does not support 16 bit
if (bits != 8) {
return false;
2018-10-02 21:06:40 -04:00
}
2018-10-02 21:06:40 -04:00
// Set desired frequency, rounding down, and don't go above available frequency for this SPIM.
nrf_spim_frequency_set(self->spim_peripheral->spim.p_reg,
baudrate_to_spim_frequency(MIN(baudrate,
self->spim_peripheral->max_frequency_MHz * 1000000)));
2018-10-02 21:06:40 -04:00
nrf_spim_mode_t mode = NRF_SPIM_MODE_0;
if (polarity) {
mode = (phase) ? NRF_SPIM_MODE_3 : NRF_SPIM_MODE_2;
} else {
mode = (phase) ? NRF_SPIM_MODE_1 : NRF_SPIM_MODE_0;
}
2018-10-02 21:06:40 -04:00
nrf_spim_configure(self->spim_peripheral->spim.p_reg, mode, NRF_SPIM_BIT_ORDER_MSB_FIRST);
2018-10-02 21:06:40 -04:00
return true;
}
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
bool grabbed_lock = false;
// NRFX_CRITICAL_SECTION_ENTER();
if (!self->has_lock) {
grabbed_lock = true;
self->has_lock = true;
}
// NRFX_CRITICAL_SECTION_EXIT();
return grabbed_lock;
}
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
self->has_lock = false;
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size_t len) {
if (len == 0)
return true;
const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size;
const uint32_t parts = len / max_xfer_size;
const uint32_t remainder = len % max_xfer_size;
for (uint32_t i = 0; i < parts; ++i) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(data + i * max_xfer_size, max_xfer_size);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
if (remainder > 0) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(data + parts * max_xfer_size, remainder);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
return true;
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len, uint8_t write_value) {
if (len == 0)
return true;
const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size;
const uint32_t parts = len / max_xfer_size;
const uint32_t remainder = len % max_xfer_size;
for (uint32_t i = 0; i < parts; ++i) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_RX(data + i * max_xfer_size, max_xfer_size);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
if (remainder > 0) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_RX(data + parts * max_xfer_size, remainder);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
return true;
}
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) {
if (len == 0)
return true;
const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size;
const uint32_t parts = len / max_xfer_size;
const uint32_t remainder = len % max_xfer_size;
for (uint32_t i = 0; i < parts; ++i) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(data_out + i * max_xfer_size, max_xfer_size,
data_in + i * max_xfer_size, max_xfer_size);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
if (remainder > 0) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(data_out + parts * max_xfer_size, remainder,
data_in + parts * max_xfer_size, remainder);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
return true;
}
2018-01-30 13:23:00 -05:00
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) {
switch (self->spim_peripheral->spim.p_reg->FREQUENCY) {
case NRF_SPIM_FREQ_125K:
2018-01-30 13:23:00 -05:00
return 125000;
case NRF_SPIM_FREQ_250K:
2018-01-30 13:23:00 -05:00
return 250000;
case NRF_SPIM_FREQ_500K:
2018-01-30 13:23:00 -05:00
return 500000;
case NRF_SPIM_FREQ_1M:
2018-01-30 13:23:00 -05:00
return 1000000;
case NRF_SPIM_FREQ_2M:
2018-01-30 13:23:00 -05:00
return 2000000;
case NRF_SPIM_FREQ_4M:
2018-01-30 13:23:00 -05:00
return 4000000;
case NRF_SPIM_FREQ_8M:
2018-01-30 13:23:00 -05:00
return 8000000;
#ifdef SPIM_FREQUENCY_FREQUENCY_M16
case NRF_SPIM_FREQ_16M:
return 16000000;
#endif
#ifdef SPIM_FREQUENCY_FREQUENCY_M32
case NRF_SPIM_FREQ_32M:
return 32000000;
#endif
2018-01-30 13:23:00 -05:00
default:
return 0;
}
}
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) {
return 0;
}
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) {
return 0;
}