WIP; problem with staticly allocated IRQ handlers

This commit is contained in:
Dan Halbert 2018-09-19 21:59:04 -04:00
parent 3f380ded6b
commit 2309e60c0d
3 changed files with 106 additions and 54 deletions

View File

@ -27,40 +27,65 @@
#include "nrfx_spim.h"
#include "nrf_gpio.h"
#if NRFX_SPIM3_ENABLED
#define INST_NO 3
#else
#define INST_NO 2
STATIC spim_peripheral_t spim_peripherals[] = {
#if NRFX_CHECK(NRFX_SPIM3_ENABLED)
// SPIM3 exists only on nRF52840 and supports 32MHz max. All other SPIM's are only 8MHz max.
// Allocate SPIM3 first.
{ .spim = NRFX_SPIM_INSTANCE(3),
.max_frequency_MHz = 32,
.max_xfer_size = SPIM3_EASYDMA_MAXCNT_SIZE,
},
#endif
#define MAX_XFER_SIZE ((1U << NRFX_CONCAT_3(SPIM, INST_NO, _EASYDMA_MAXCNT_SIZE)) - 1)
#if NRFX_CHECK(NRFX_SPIM2_ENABLED)
// SPIM2 is not shared with a TWIM, so allocate before the shared ones.
{ .spim = NRFX_SPIM_INSTANCE(2),
.max_frequency_MHz = 8,
.max_xfer_size = SPIM2_EASYDMA_MAXCNT_SIZE,
},
#endif
#if NRFX_CHECK(NRFX_SPIM1_ENABLED)
// SPIM1 and TWIM1 share an address.
{ .spim = NRFX_SPIM_INSTANCE(1),
.max_frequency_MHz = 8,
.max_xfer_size = SPIM1_EASYDMA_MAXCNT_SIZE,
},
#endif
#if NRFX_CHECK(NRFX_SPIM0_ENABLED)
// SPIM0 and TWIM0 share an address.
{ .spim = NRFX_SPIM_INSTANCE(0),
.max_frequency_MHz = 8,
.max_xfer_size = SPIM0_EASYDMA_MAXCNT_SIZE,
},
#endif
};
// Convert frequency to clock-speed-dependent value
static nrf_spim_frequency_t baudrate_to_spim_frequency(const uint32_t baudrate) {
if (baudrate <= 125000)
if (baudrate <= 125000) {
return NRF_SPIM_FREQ_125K;
if (baudrate <= 250000)
}
if (baudrate <= 250000) {
return NRF_SPIM_FREQ_250K;
if (baudrate <= 500000)
}
if (baudrate <= 500000) {
return NRF_SPIM_FREQ_500K;
if (baudrate <= 1000000)
}
if (baudrate <= 1000000) {
return NRF_SPIM_FREQ_1M;
if (baudrate <= 2000000)
}
if (baudrate <= 2000000) {
return NRF_SPIM_FREQ_2M;
if (baudrate <= 4000000)
}
if (baudrate <= 4000000) {
return NRF_SPIM_FREQ_4M;
if (baudrate <= 8000000)
}
if (baudrate <= 8000000) {
return NRF_SPIM_FREQ_8M;
}
#ifdef SPIM_FREQUENCY_FREQUENCY_M16
if (baudrate <= 16000000)
if (baudrate <= 16000000) {
return NRF_SPIM_FREQ_16M;
}
#endif
#ifdef SPIM_FREQUENCY_FREQUENCY_M32
@ -71,8 +96,18 @@ static nrf_spim_frequency_t baudrate_to_spim_frequency(const uint32_t baudrate)
}
void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi, const mcu_pin_obj_t * miso) {
const nrfx_spim_t instance = NRFX_SPIM_INSTANCE(INST_NO);
self->spim = instance;
// Find a free instance.
self->spim_peripheral = NULL;
for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) {
if ((spim_peripherals[i].spim.p_reg->ENABLE & SPIM_ENABLE_ENABLE_Msk) == 0) {
self->spim_peripheral = &spim_peripherals[i];
break;
}
}
if (self->spim_peripheral == NULL) {
mp_raise_ValueError(translate("All SPI peripherals are in use"));
}
nrfx_spim_config_t config = NRFX_SPIM_DEFAULT_CONFIG;
config.frequency = NRF_SPIM_FREQ_8M;
@ -97,12 +132,12 @@ void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t *
self->MISO_pin_number = NO_PIN;
}
nrfx_err_t err = nrfx_spim_init(&self->spim, &config, NULL, NULL);
nrfx_err_t err = nrfx_spim_init(&self->spim_peripheral->spim, &config, NULL, NULL);
// A soft reset doesn't uninit the driver so we might end up with a invalid state
if (err == NRFX_ERROR_INVALID_STATE) {
nrfx_spim_uninit(&self->spim);
err = nrfx_spim_init(&self->spim, &config, NULL, NULL);
nrfx_spim_uninit(&self->spim_peripheral->spim);
err = nrfx_spim_init(&self->spim_peripheral->spim, &config, NULL, NULL);
}
if (err != NRFX_SUCCESS) {
@ -119,7 +154,7 @@ void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
if (common_hal_busio_spi_deinited(self))
return;
nrfx_spim_uninit(&self->spim);
nrfx_spim_uninit(&self->spim_peripheral->spim);
reset_pin_number(self->clock_pin_number);
reset_pin_number(self->MOSI_pin_number);
@ -131,7 +166,11 @@ bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, ui
if (bits != 8)
return false;
nrf_spim_frequency_set(self->spim.p_reg, baudrate_to_spim_frequency(baudrate));
if (baudrate > self->spim_peripheral->max_frequency_MHz * 1000000) {
mp_raise_ValueError(translate("Baud rate too high for this SPI peripheral"));
return false;
}
nrf_spim_frequency_set(self->spim_peripheral->spim.p_reg, baudrate_to_spim_frequency(baudrate));
nrf_spim_mode_t mode = NRF_SPIM_MODE_0;
if (polarity) {
@ -140,7 +179,7 @@ bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, ui
mode = (phase) ? NRF_SPIM_MODE_1 : NRF_SPIM_MODE_0;
}
nrf_spim_configure(self->spim.p_reg, mode, NRF_SPIM_BIT_ORDER_MSB_FIRST);
nrf_spim_configure(self->spim_peripheral->spim.p_reg, mode, NRF_SPIM_BIT_ORDER_MSB_FIRST);
return true;
}
@ -168,18 +207,19 @@ bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size
if (len == 0)
return true;
const uint32_t parts = len / MAX_XFER_SIZE;
const uint32_t remainder = len % MAX_XFER_SIZE;
const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size;
const uint32_t parts = len / max_xfer_size;
const uint32_t remainder = len % max_xfer_size;
for (uint32_t i = 0; i < parts; ++i) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(data + i * MAX_XFER_SIZE, MAX_XFER_SIZE);
if (nrfx_spim_xfer(&self->spim, &xfer, 0) != NRFX_SUCCESS)
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(data + i * max_xfer_size, max_xfer_size);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
if (remainder > 0) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(data + parts * MAX_XFER_SIZE, remainder);
if (nrfx_spim_xfer(&self->spim, &xfer, 0) != NRFX_SUCCESS)
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(data + parts * max_xfer_size, remainder);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
@ -190,18 +230,19 @@ bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len,
if (len == 0)
return true;
const uint32_t parts = len / MAX_XFER_SIZE;
const uint32_t remainder = len % MAX_XFER_SIZE;
const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size;
const uint32_t parts = len / max_xfer_size;
const uint32_t remainder = len % max_xfer_size;
for (uint32_t i = 0; i < parts; ++i) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_RX(data + i * MAX_XFER_SIZE, MAX_XFER_SIZE);
if (nrfx_spim_xfer(&self->spim, &xfer, 0) != NRFX_SUCCESS)
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_RX(data + i * max_xfer_size, max_xfer_size);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
if (remainder > 0) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_RX(data + parts * MAX_XFER_SIZE, remainder);
if (nrfx_spim_xfer(&self->spim, &xfer, 0) != NRFX_SUCCESS)
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_RX(data + parts * max_xfer_size, remainder);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
@ -212,20 +253,22 @@ bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uin
if (len == 0)
return true;
const uint32_t parts = len / MAX_XFER_SIZE;
const uint32_t remainder = len % MAX_XFER_SIZE;
const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size;
const uint32_t parts = len / max_xfer_size;
const uint32_t remainder = len % max_xfer_size;
for (uint32_t i = 0; i < parts; ++i) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(data_out + i * MAX_XFER_SIZE, MAX_XFER_SIZE,
data_in + i * MAX_XFER_SIZE, MAX_XFER_SIZE);
if (nrfx_spim_xfer(&self->spim, &xfer, 0) != NRFX_SUCCESS)
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(data_out + i * max_xfer_size, max_xfer_size,
data_in + i * max_xfer_size, max_xfer_size);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
if (remainder > 0) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(data_out + parts * MAX_XFER_SIZE, remainder,
data_in + parts * MAX_XFER_SIZE, remainder);
if (nrfx_spim_xfer(&self->spim, &xfer, 0) != NRFX_SUCCESS)
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(data_out + parts * max_xfer_size, remainder,
data_in + parts * max_xfer_size, remainder);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
@ -233,7 +276,7 @@ bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uin
}
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) {
switch (self->spim.p_reg->FREQUENCY) {
switch (self->spim_peripheral->spim.p_reg->FREQUENCY) {
case NRF_SPIM_FREQ_125K:
return 125000;
case NRF_SPIM_FREQ_250K:

View File

@ -31,8 +31,14 @@
#include "py/obj.h"
typedef struct {
mp_obj_base_t base;
nrfx_spim_t spim;
uint8_t max_frequency_MHz;
uint8_t max_xfer_size;
} spim_peripheral_t;
typedef struct {
mp_obj_base_t base;
spim_peripheral_t* spim_peripheral;
bool has_lock;
uint8_t clock_pin_number;
uint8_t MOSI_pin_number;

View File

@ -8,18 +8,21 @@
// SPI
#define NRFX_SPIM_ENABLED 1
#define NRFX_SPIM0_ENABLED 1
#define NRFX_SPIM1_ENABLED 1
#define NRFX_SPIM2_ENABLED 1
#ifdef NRF52840_XXAA
#define NRFX_SPIM3_ENABLED 1
#else
#define NRFX_SPIM2_ENABLED 1
#endif
#define NRFX_SPIM_DEFAULT_CONFIG_IRQ_PRIORITY 7
#define NRFX_SPIM_MISO_PULL_CFG 1
// TWI aka. I2C
#define NRFX_TWIM_ENABLED 1
#define NRFX_TWIM0_ENABLED 1
#define NRFX_TWIM1_ENABLED 1
#define NRFX_TWIM_DEFAULT_CONFIG_IRQ_PRIORITY 7
#define NRFX_TWIM_DEFAULT_CONFIG_FREQUENCY NRF_TWIM_FREQ_400K
@ -45,4 +48,4 @@
#define NRFX_PWM3_ENABLED 0
#endif
#endif
#endif // NRFX_CONFIG_H__