Support for Xtensa emitter and assembler, and upgraded F4 and F7 STM HAL
This release adds support for the Xtensa architecture as a target for the
native emitter, as well as Xtensa inline assembler. The int.from_bytes
and int.to_bytes methods now require a second argument (the byte order)
per CPython (only "little" is supported at this time). The "readall"
method has been removed from all stream classes that used it; "read" with
no arguments should be used instead. There is now support for importing
packages from compiled .mpy files. Test coverage is increased to 96%.
The generic I2C driver has improvements: configurable clock stretching
timeout, "stop" argument added to readfrom/writeto methods, "nack"
argument added to readinto, and write[to] now returns num of ACKs
received. The framebuf module now handles 16-bit depth (generic colour
format) and has hline, vline, rect, line methods. A new utimeq module is
added for efficient queue ordering defined by modulo time (to be
compatible with time.ticks_xxx functions). The pyboard.py script has been
modified so that the target board is not reset between scripts or commands
that are given on a single command line.
For the stmhal port the STM Cube HAL has been upgraded: Cube F4 HAL to
v1.13.1 (CMSIS 2.5.1, HAL v1.5.2) and Cube F7 HAL to v1.1.2. There is a
more robust pyb.I2C implementation (DMA is now disabled by default, can be
enabled via an option), and there is an implementation of machine.I2C with
robust error handling and hardware acceleration on F4 MCUs. It is now
recommended to use machine.I2C instead of pyb.I2C. The UART class is now
more robust with better handling of errors/timeouts. There is also more
accurate VBAT and VREFINT measurements for the ADC. New boards that are
supported include: NUCLEO_F767ZI, STM32F769DISC and NUCLEO_L476RG.
For the esp8266 port select/poll is now supported for sockets using the
uselect module. There is support for native and viper emitters, as well
as an inline assembler (with limited iRAM for storage of native functions,
or the option to store code to flash). There is improved software I2C
with a slight API change: scl/sda pins can be specified as positional only
when "-1" is passed as the first argument to indicate the use of software
I2C. It is recommended to use keyword arguments for scl/sda. There is
very early support for over-the-air (OTA) updates using the yaota8266
project.
A detailed list of changes follows.
py core:
- emitnative: fix native import emitter when in viper mode
- remove readall() method, which is equivalent to read() w/o args
- objexcept: allow clearing traceback with 'exc.__traceback__ = None'
- runtime: mp_resume: handle exceptions in Python __next__()
- mkrules.mk: rework find command so it works on OSX
- *.mk: replace uses of 'sed' with $(SED)
- parse: move function to check for const parse node to parse.[ch]
- parse: make mp_parse_node_new_leaf an inline function
- parse: add code to fold logical constants in or/and/not operations
- factor persistent code load/save funcs into persistentcode.[ch]
- factor out persistent-code reader into separate files
- lexer: rewrite mp_lexer_new_from_str_len in terms of mp_reader_mem
- lexer: provide generic mp_lexer_new_from_file based on mp_reader
- lexer: rewrite mp_lexer_new_from_fd in terms of mp_reader
- lexer: make lexer use an mp_reader as its source
- objtype: implement __call__ handling for an instance w/o heap alloc
- factor out common code from assemblers into asmbase.[ch]
- stream: move ad-hoc ioctl constants to stream.h and rename them
- compile: simplify configuration of native emitter
- emit.h: remove long-obsolete declarations for cpython emitter
- move arch-specific assembler macros from emitnative to asmXXX.h
- asmbase: add MP_PLAT_COMMIT_EXEC option for handling exec code
- asmxtensa: add low-level Xtensa assembler
- integrate Xtensa assembler into native emitter
- allow inline-assembler emitter to be generic
- add inline Xtensa assembler
- emitinline: embed entire asm struct instead of a pointer to it
- emitinline: move inline-asm align and data methods to compiler
- emitinline: move common code for end of final pass to compiler
- asm: remove need for dummy_data when doing initial assembler passes
- objint: from_bytes, to_bytes: require byteorder arg, require "little"
- binary: do zero extension when storing a value larger than word size
- builtinimport: support importing packages from compiled .mpy files
- mpz: remove unreachable code in mpn_or_neg functions
- runtime: zero out fs_user_mount array in mp_init
- mpconfig.h: enable MICROPY_PY_SYS_EXIT by default
- add MICROPY_KBD_EXCEPTION config option to provide mp_kbd_exception
- compile: add an extra pass for Xtensa inline assembler
- modbuiltins: remove unreachable code
- objint: rename mp_obj_int_as_float to mp_obj_int_as_float_impl
- emitglue: refactor to remove assert(0), to improve coverage
- lexer: remove unreachable code in string tokeniser
- lexer: remove unnecessary check for EOF in lexer's next_char func
- lexer: permanently disable the mp_lexer_show_token function
- parsenum: simplify and generalise decoding of digit values
- mpz: fix assertion in mpz_set_from_str which checks value of base
- mpprint: add assertion for, and comment about, valid base values
- objint: simplify mp_int_format_size and remove unreachable code
- unicode: comment-out unused function unichar_isprint
- consistently update signatures of .make_new and .call methods
- mkrules.mk: add MPY_CROSS_FLAGS option to pass flags to mpy-cross
- builtinimport: fix bug when importing names from frozen packages
extmod:
- machine_i2c: make the clock stretching timeout configurable
- machine_i2c: raise an error when clock stretching times out
- machine_i2c: release SDA on bus error
- machine_i2c: add a C-level I2C-protocol, refactoring soft I2C
- machine_i2c: add argument to C funcs to control stop generation
- machine_i2c: rewrite i2c.scan in terms of C-level protocol
- machine_i2c: rewrite mem xfer funcs in terms of C-level protocol
- machine_i2c: remove unneeded i2c_write_mem/i2c_read_mem funcs
- machine_i2c: make C-level functions return -errno on I2C error
- machine_i2c: add 'nack' argument to i2c.readinto
- machine_i2c: make i2c.write[to] methods return num of ACKs recvd
- machine_i2c: add 'stop' argument to i2c readfrom/writeto meths
- machine_i2c: remove trivial function wrappers
- machine_i2c: expose soft I2C obj and readfrom/writeto funcs
- machine_i2c: add hook to constructor to call port-specific code
- modurandom: allow to build with float disabled
- modframebuf: make FrameBuffer handle 16bit depth
- modframebuf: add back legacy FrameBuffer1 "class"
- modframebuf: optimise fill and fill_rect methods
- vfs_fat: implement POSIX behaviour of rename, allow to overwrite
- moduselect: use stream helper function instead of ad-hoc code
- moduselect: use configurable EVENT_POLL_HOOK instead of WFI
- modlwip: add ioctl method to socket, with poll implementation
- vfs_fat_file: allow file obj to respond to ioctl flush request
- modbtree: add method to sync the database
- modbtree: rename "sync" method to "flush" for consistency
- modframebuf: add hline, vline, rect and line methods
- machine_spi: provide reusable software SPI class
- modframebuf: make framebuf implement the buffer protocol
- modframebuf: store underlying buffer object to prevent GC free
- modutimeq: copy of current moduheapq with timeq support for refactoring
- modutimeq: refactor into optimized class
- modutimeq: make time_less_than be actually "less than", not less/eq
lib:
- utils/interrupt_char: use core-provided mp_kbd_exception if enabled
drivers:
- display/ssd1306.py: update to use FrameBuffer not FrameBuffer1
- onewire: enable pull up on data pin
- onewire/ds18x20: fix negative temperature calc for DS18B20
tools:
- tinytest-codegen: blacklist recently added uheapq_timeq test (qemu-arm)
- pyboard.py: refactor so target is not reset between scripts/cmd
- mpy-tool.py: add support for OPT_CACHE_MAP_LOOKUP_IN_BYTECODE
tests:
- micropython: add test for import from within viper function
- use read() instead of readall()
- basics: add test for logical constant folding
- micropython: add test for creating traceback without allocation
- micropython: move alloc-less traceback test to separate test file
- extmod: improve ujson coverage
- basics: improve user class coverage
- basics: add test for dict.fromkeys where arg is a generator
- basics: add tests for if-expressions
- basics: change dict_fromkeys test so it doesn't use generators
- basics: enable tests for list slice getting with 3rd arg
- extmod/vfs_fat_fileio: add test for constructor of FileIO type
- extmod/btree1: exercise btree.flush()
- extmod/framebuf1: add basics tests for hline, vline, rect, line
- update for required byteorder arg for int.from_bytes()/to_bytes()
- extmod: improve moductypes test coverage
- extmod: improve modframebuf test coverage
- micropython: get heapalloc_traceback test running on baremetal
- struct*: make skippable
- basics: improve mpz test coverage
- float/builtin_float_round: test round() with second arg
- basics/builtin_dir: add test for dir() of a type
- basics: add test for builtin locals()
- basics/set_pop: improve coverage of set functions
- run-tests: for REPL tests make sure the REPL is exited at the end
- basics: improve test coverage for generators
- import: add a test which uses ... in from-import statement
- add tests to improve coverage of runtime.c
- add tests to improve coverage of objarray.c
- extmod: add test for utimeq module
- basics/lexer: add a test for newline-escaping within a string
- add a coverage test for printing the parse-tree
- utimeq_stable: test for partial stability of utimeq queuing
- heapalloc_inst_call: test for no alloc for simple object calls
- basics: add tests for parsing of ints with base 36
- basics: add tests to improve coverage of binary.c
- micropython: add test for micropython.stack_use() function
- extmod: improve ubinascii.c test coverage
- thread: improve modthread.c test coverage
- cmdline: improve repl.c autocomplete test coverage
- unix: improve runtime_utils.c test coverage
- pyb/uart: update test to match recent change to UART timeout_char
- run-tests: allow to skip set tests
- improve warning.c test coverage
- float: improve formatfloat.c test coverage using Python
- unix: improve formatfloat.c test coverage using C
- unix/extra_coverage: add basic tests to import frozen str and mpy
- types1: split out set type test to set_types
- array: allow to skip test if "array" is unavailable
- unix/extra_coverage: add tests for importing frozen packages
unix port:
- rename define for unix moduselect to MICROPY_PY_USELECT_POSIX
- Makefile: update freedos target for change of USELECT config name
- enable utimeq module
- main: allow to print the parse tree in coverage build
- Makefile: make "coverage_test" target mirror Travis test actions
- moduselect: if file object passed to .register(), return it in .poll()
- Makefile: split long line for coverage target, easier to modify
- enable and add basic frozen str and frozen mpy in coverage build
- Makefile: allow cache-map-lookup optimisation with frozen bytecode
windows port:
- enable READER_POSIX to get access to lexer_new_from_file
stmhal port:
- dma: de-init the DMA peripheral properly before initialising
- i2c: add option to I2C to enable/disable use of DMA transfers
- i2c: reset the I2C peripheral if there was an error on the bus
- rename mp_hal_pin_set_af to _config_alt, to simplify alt config
- upgrade to STM32CubeF4 v1.13.0 - CMSIS/Device 2.5.1
- upgrade to STM32CubeF4 v1.13.0 - HAL v1.5.1
- apply STM32CubeF4 v1.13.1 patch - upgrade HAL driver to v1.5.2
- hal/i2c: reapply HAL commit ea040a4 for f4
- hal/sd: reapply HAL commit 1d7fb82 for f4
- hal: reapply HAL commit 9db719b for f4
- hal/rcc: reapply HAL commit c568a2b for f4
- hal/sd: reapply HAL commit 09de030 for f4
- boards: configure all F4 boards to work with new HAL
- make-stmconst.py: fix regex's to work with current CMSIS
- i2c: handle I2C IRQs
- dma: precalculate register base and bitshift on handle init
- dma: mark DMA sate as READY even if HAL_DMA_Init is skipped
- can: clear FIFO flags in IRQ handler
- i2c: provide custom IRQ handlers
- hal: do not include <stdio.h> in HAL headers
- mphalport.h: use single GPIOx->BSRR register
- make-stmconst.py: add support for files with invalid utf8 bytes
- update HALCOMMITS due to change to hal
- make-stmconst.py: restore Python 2 compatibility
- update HALCOMMITS due to change to hal
- moduselect: move to extmod/ for reuse by other ports
- i2c: use the HAL's I2C IRQ handler for F7 and L4 MCUs
- updates to get F411 MCUs compiling with latest ST HAL
- i2c: remove use of legacy I2C_NOSTRETCH_DISABLED option
- add beginnings of port-specific machine.I2C implementation
- i2c: add support for I2C4 hardware block on F7 MCUs
- i2c: expose the pyb_i2c_obj_t struct and some relevant functions
- machine_i2c: provide HW implementation of I2C peripherals for F4
- add support for flash storage on STM32F415
- add back GPIO_BSRRL and GPIO_BSRRH constants to stm module
- add OpenOCD configuration for STM32L4
- add address parameters to openocd config files
- adc: add "mask" selection parameter to pyb.ADCAll constructor
- adc: provide more accurate measure of VBAT and VREFINT
- adc: make ADCAll.read_core_temp return accurate float value
- adc: add ADCAll.read_vref method, returning "3.3v" value
- adc: add support for F767 MCU
- adc: make channel "16" always map to the temperature sensor
- sdcard: clean/invalidate cache before DMA transfers with SD card
- moduos: implement POSIX behaviour of rename, allow to overwrite
- adc: use constants from new HAL version
- refactor UART configuration to use pin objects
- uart: add support for UART7 and UART8 on F7 MCUs
- uart: add check that UART id is valid for the given board
- cmsis: update STM32F7 CMSIS device include files to V1.1.2
- hal: update ST32CubeF7 HAL files to V1.1.2
- port of f4 hal commit c568a2b to updated f7 hal
- port of f4 hal commit 09de030 to updated f7 hal
- port of f4 hal commit 1d7fb82 to updated f7 hal
- declare and initialise PrescTables for F7 MCUs
- boards/STM32F7DISC: define LSE_STARTUP_TIMEOUT
- hal: update HALCOMMITS due to change in f7 hal files
- refactor to use extmod implementation of software SPI class
- cmsis: add CMSIS file stm32f767xx.h, V1.1.2
- add NUCLEO_F767ZI board, with openocd config for stm32f7
- cmsis: add CMSIS file stm32f769xx.h, V1.1.2
- add STM32F769DISC board files
- move PY_SYS_PLATFORM config from board to general config file
- mpconfigport: add weak-module links for io, collections, random
- rename mp_const_vcp_interrupt to mp_kbd_exception
- usb: always use the mp_kbd_exception object for VCP interrupt
- use core-provided keyboard exception object
- led: properly initialise timer handle to zero before using it
- mphalport.h: explicitly use HAL's GPIO constants for pull modes
- usrsw: use mp_hal_pin_config function instead of HAL_GPIO_Init
- led: use mp_hal_pin_config function instead of HAL_GPIO_Init
- sdcard: use mp_hal_pin_config function instead of HAL_GPIO_Init
- add support for STM32 Nucleo64 L476RG
- uart: provide a custom function to transmit over UART
- uart: increase inter-character timeout by 1ms
- enable utimeq module
cc3200 port:
- tools/smoke.py: change readall() to read()
- pybspi: remove static mode=SPI.MASTER parameter for latest HW API
- mods/pybspi: remove SPI.MASTER constant, it's no longer needed
- update for moduselect moved to extmod/
- re-add support for UART REPL (MICROPY_STDIO_UART setting)
- enable UART REPL by default
- README: (re)add information about accessing REPL on serial
- make: rename "deploy" target to "deploy-ota"
- add targets to erase flash, deploy firmware using cc3200tool
- README: reorganize and update to the current state of affairs
- modwlan: add network.WLAN.print_ver() diagnostic function
esp8266 port:
- enable uselect module
- move websocket_helper.py from scripts to modules for frozen BC
- refactor to use extmod implementation of software SPI class
- mpconfigport_512k: disable framebuf module for 512k build
- enable native emitter for Xtensa arch
- enable inline Xtensa assembler
- add "ota" target to produce firmware binary for use with yaota8266
- use core-provided keyboard exception object
- add "erase" target to Makefile, to erase entire flash
- when doing GC be sure to trace the memory holding native code
- modesp: flash_user_start(): support configuration with yaota8266
- force relinking OTA firmware image if built after normal one
- scripts/inisetup: dump FS starting sector/size on error
- Makefile: produce OTA firmware as firmware-ota.bin
- modesp: make check_fw() work with OTA firmware
- enable utimeq module
- Makefile: put firmware-ota.bin in build/, for consistency
- modules/flashbdev: add RESERVED_SECS before the filesystem
- modules/flashbdev: remove code to patch bootloader flash size
- modules/flashbdev: remove now-unused function set_bl_flash_size
- modules/flashbdev: change RESERVED_SECS to 0
zephyr port:
- add .gitignore to ignore Zephyr's "outdir" directory
- zephyr_getchar: update to Zephyr 1.6 unified kernel API
- switch to Zephyr 1.6 unified kernel API
- support raw REPL
- implement soft reset feature
- main: initialize sys.path and sys.argv
- use core-provided keyboard exception object
- uart_core: access console UART directly instead of printk() hack
- enable slice subscription
docs:
- remove references to readall() and update stream read() docs
- library/index: elaborate on u-modules
- library/machine.I2C: refine definitions of I2C methods
- library/pyb.Accel: add hardware note about pins used by accel
- library/pyb.UART: added clarification about timeouts
- library/pyb.UART: moved writechar doc to sit with other writes
- esp8266/tutorial: update intro to add Getting the firmware section
- library/machine.I2C: fix I2C constructor docs to match impl
- esp8266/tutorial: close socket after reading page content
- esp8266/general: add "Scarcity of runtime resources" section
- library/esp: document esp.set_native_code_location() function
- library/esp: remove para and add further warning about flash
- usocket: clarify that socket timeout raises OSError exception
travis:
- build STM32 F7 and L4 boards under Travis CI
- include persistent bytecode with floats in coverage tests
examples:
- hwapi: button_led: Add GPIO pin read example
- hwapi: add soft_pwm example converted to uasyncio
- http_client: use read() instead of readall()
- hwapi: add uasyncio example of fading 2 LEDs in parallel
- hwapi: add example for machine.time_pulse_us()
- hwapi: add hwconfig for console tracing of LED operations
- accellog.py: change 1: to /sd/, and update comment about FS
- hwapi/hwconfig_console: don't alloc memory in value()
import utimeq, utime
# Max queue size, the queue allocated statically on creation
q = utimeq.utimeq(10)
q.push(utime.ticks_ms(), data1, data2)
res = [0, 0, 0]
# Items in res are filled up with results
q.pop(res)
So long as a port defines relevant mp_hal_pin_xxx functions (and delay) it
can make use of this software SPI class without the need for additional
code.
These are basic drawing primitives. They work in a generic way on all
framebuf formats by calling the underlying setpixel or fill_rect C-level
primitives.
If you have longish operations on the db (such as logging data) it may
be desirable to periodically sync the database to the disk. The added
btree.sync() method merely exposes the berkley __bt_sync function to the
user.
The constants MP_IOCTL_POLL_xxx, which were stmhal-specific, are moved
from stmhal/pybioctl.h (now deleted) to py/stream.h. And they are renamed
to MP_STREAM_POLL_xxx to be consistent with other such constants.
All uses of these constants have been updated.
If the destination of os.rename() exists then it will be overwritten if it
is a file. This is the POSIX behaviour, which is also the CPython
behaviour, and so we follow suit.
See issue #2598 for discussion.
Fill is a very common operation (eg to clear the screen) and it is worth
optimising it, by providing a specialised fill_rect function for each
framebuffer format.
This patch improved the speed of fill by 10 times for a 16-bit display
with 160*128 pixels.
Rename FrameBuffer1 into FrameBuffer and make it handle different bit
depths via a method table that has getpixel and setpixel. Currently
supported formats are MVLSB (monochrome, vertical, LSB) and RGB565.
Also add blit() and fill_rect() methods.
Docs are here: http://tannewt-micropython.readthedocs.io/en/microcontroller/
It differs from upstream's machine in the following ways:
* Python API is identical across ports due to code structure. (Lives in shared-bindings)
* Focuses on abstracting common functionality (AnalogIn) and not representing structure (ADC).
* Documentation lives with code making it easy to ensure they match.
* Pin is split into references (board.D13 and microcontroller.pin.PA17) and functionality (DigitalInOut).
* All nativeio classes claim underlying hardware resources when inited on construction, support Context Managers (aka with statements) and have deinit methods which release the claimed hardware.
* All constructors take pin references rather than peripheral ids. Its up to the implementation to find hardware or throw and exception.
If a port defines MICROPY_READER_POSIX or MICROPY_READER_FATFS then
lexer.c now provides an implementation of mp_lexer_new_from_file using
the mp_reader_new_file function.
Implementations of persistent-code reader are provided for POSIX systems
and systems using FatFS. Macros to use these are MICROPY_READER_POSIX and
MICROPY_READER_FATFS respectively. If an alternative implementation is
needed then a port can define the function mp_reader_new_file.
ESP8266 port uses SDK 2.0, has more heap, has support for 512k devices
This release brings some code size reductions to the core as well as
more tests and improved coverage which is now at 94.3%.
The time.ticks_diff(a, b) function has changed: the order of the arguments
has been swapped so that it behaves like "a - b", and it can now return a
negative number if "a" came before "b" (modulo the period of the ticks
functions).
For the ESP8266 port the Espressif SDK has been updated to 2.0.0, the
heap has been increased from 28k to 36k, and there is support for 512k
devices via "make 512k". upip is included by default as frozen bytecode.
The network module now allows access-point reconnection without WiFi
credentials, and exposes configuration for the station DHCP hostname. The
DS18B20 driver now handles negative temperatures, and NeoPixel and APA102
drivers handle 4 bytes-per-pixel LEDs.
For the CC3200 port there is now support for loading of precompiled .mpy
files and threading now works properly with interrupts.
A detailed list of changes follows.
py core:
- py.mk: automatically add frozen.c to source list if FROZEN_DIR is defined
- be more specific with MP_DECLARE_CONST_FUN_OBJ macros
- specialise builtin funcs to use separate type for fixed arg count
- {modbuiltins,obj}: use MP_PYTHON_PRINTER where possible
- modbuiltins: add builtin "slice", pointing to existing slice type
- add "delattr" builtin, conditional on MICROPY_CPYTHON_COMPAT
- sequence: fix reverse slicing of lists
- fix null pointer dereference in mpz.c, fix missing va_end in warning.c
- remove asserts that are always true in emitbc.c
- fix wrong assumption that m_renew will not move if shrinking
- change config default so m_malloc0 uses memset if GC not enabled
- add MICROPY_FLOAT_CONST macro for defining float constants
- move frozen bytecode Makefile rules from ports to common mk files
- strip leading dirs from frozen mpy files, so any path can be used
extmod:
- vfs_fat_file: check fatfs f_sync() and f_close() returns for errors
- vfs_fat_file: make file.close() a no-op if file already closed
- utime_mphal: ticks_diff(): switch arg order, return signed value
- utime_mphal: add MP_THREAD_GIL_EXIT/ENTER warppers for sleep functions
- utime_mphal: implement ticks_add(), add to all maintained ports
- utime_mphal: allow ticks functions period be configurable by a port
lib:
- utils/pyhelp.c: use mp_printf() instead of printf()
- utils/pyexec: add mp_hal_set_interrupt_char() prototype
- libm: move Thumb-specific sqrtf function to separate file
drivers:
- add "from micropython import const" when const is used
tools:
- upgrade upip to 1.1.4: fix error on unix when installing to non-existing
absolute path
- pip-micropython: remove deprecated wrapper tool
- check_code_size.sh: code size validation script for CI
- replace upip tarball with just source file, to make its inclusion as
frozen modules in multiple ports less magic
tests:
- extmod/vfs_fat: improve VFS test coverage
- basics/builtin_slice: add test for "slice" builtin name
- basics: add test for builtin "delattr"
- extmod/vfs_fat_fsusermount: improve fsusermount test coverage
- extmod/vfs_fat_oldproto: test old block device protocol
- basics/gc1: garbage collector threshold() coverage
- extmod/uhashlib_sha1: coverage for SHA1 algorithm
- extmod/uhashlib_sha256: rename sha256.py test
- btree1: fix out of memory error running on esp8266
- extmod/ticks_diff: test for new semantics of ticks_diff()
- extmod/framebuf1: test framebuffer pixel clear, and text function
minimal port:
- Makefile: split rule for firmware.bin generation
unix port:
- Makefile: remove references to deprecated pip-micropython
- modtime: use ticks_diff() implementation from extmod/utime_mphal.c
- mphalport.h: add warning of mp_hal_delay_ms() implementation
- modtime: switch ticks/sleep_ms/us() to utime_mphal
- fix symbol references for x86 Mac
- replace upip tarball with just source file
windows port:
- enable utime_mphal following unix, define mp_hal_ticks_*
- fix utime_mphal compilation for msvc
- implement mp_hal_ticks_cpu in terms of QueryPerformanceCounter
qemu-arm port:
- exclude ticks_diff test for qemu-arm port
- exclude extmod/vfs_fat_fileio.py test
- exclude new vfs_fat tests
- enable software floating point support, and float tests
stmhal port:
- modutime: refactor to use extmod's version of ticks_cpu
- refactor pin usage to use mp_hal_pin API
- led: refactor LED to use mp_hal_pin_output() init function
- Makefile: use standard rules for frozen module generation
- modutime: consistently convert to MP_ROM_QSTR/MP_ROM_PTR
- enable SD power save (disable CLK on idle)
cc3200 port:
- use mp_raise_XXX helper functions to reduce code size
- mods/pybspi: allow "write" arg of read/readinto to be positional
- enable loading of precompiled .mpy files
- fix thread mutex's so threading works with interrupts
teensy port:
- update to provide new mp_hal_pin_XXX functions following stmhal
esp8266 port:
- Makefile: use latest esptool.py flash size auto-detection
- esp_init_data: auto-initialize system params with vendor SDK 2.0.0
- esp8266.ld: move help.o to iROM
- esp8266.ld: move modmachine.o to iROM
- esp8266.ld: move main.o to iROM
- add MP_FASTCODE modifier to put a function to iRAM
- main: mark nlr_jump_fail() as MP_FASTCODE
- modules/webrepl: enforce only one concurrent WebREPL connection
- etshal.h: add few more ESP8266 vendor lib prototypes
- modesp: add flash_user_start() function
- add support for building firmware version for 512K modules
- scripts: make neopixel/apa102 handle 4bpp LEDs with common code
- modutime: consistently convert to MP_ROM_QSTR/MP_ROM_PTR
- modnetwork: config(): fix copy-paste error in setting "mac"
- scripts/port_diag: add descriptions for esf_buf types
- modnetwork.c: allows AP reconnection without WiFi credentials
- main: bump heap size to 36K
- etshal.h: add prototypes for SPIRead/SPIWrite/SPIEraseSector
- etshal.h: adjust size of MD5_CTX structure
- modules: fix negative temperature in ds18x20 driver
- rename "machine" module implementation to use contemporary naming
- rework webrepl_setup to run over wired REPL
- espneopixel.c: solve glitching LED issues with cpu at 80MHz
- include upip as a standard frozen bytecode module
- update docs for esptool 1.2.1/SDK 2.0 (--flash_size=detect)
- modnetwork.c: expose configuration for station DHCP hostname
zephyr port:
- implement utime module
- use board/SoC values for startup banner based on Zephyr config
- initial implementation of machine.Pin
- zephyr_getchar: update for recent Zephyr refactor of console hooks
- support time -> utime module "weaklink"
- README: update for the current featureset, add more info
- mpconfigport.h: move less important params to the bottom
- Makefile: allow to adjust heap size from make command line
- Makefile: update comments to the current state of affairs
- Makefile: allow to override Zephyr config from make command line
- Makefile: add minimal port
- Makefile: add -fomit-frame-pointer to reduce code size
- mphalport.h: update for new "unified" kernal API (sleep functions)
docs:
- machine.SPI: bring up to date with Hardware API, make vendor-neutral
- machine.SPI: improve descriptions of xfer methods
- library/builtins: add docs for delattr and slice
- library/network: reword intro paragraph
- library/network: typo fixes, consistent acronym capitalization
- library/index: update TOCs so builtins sorted before modules
- utime: document ticks_cpu() in more detail
- utime: describe new semantics of ticks_diff() (signed ring arithmetics)
- utime: add docs for ticks_add(), improvements for other ticks_*()
- esp8266: update for new WebREPL setup procedure
- */quickref.rst: use new semantics of ticks_diff()
- library/machine.Pin: update Pin docs to align with new HW API
travis:
- integrate tools/check_code_size.sh
- minimal: Use CROSS=1, for binary size check
examples:
- http_server_simplistic: add "not suitable for real use" note
- hwapi: example showing best practices for HW API usage in apps
- hwapi: add hwconfig for DragonBoard 410c
Its addition was due to an early exploration on how to add CPython-like
stream interface. It's clear that it's not needed and just takes up
bytes in all ports.
As required for further elaboration of uasyncio, like supporting baremetal
systems with wraparound timesources. This is not intended to be public
interface, and likely will be further refactored in the future.
Now the function properly uses ring arithmetic to return signed value
in range (inclusive):
[-MICROPY_PY_UTIME_TICKS_PERIOD/2, MICROPY_PY_UTIME_TICKS_PERIOD/2-1].
That means that function can properly process 2 time values away from
each other within MICROPY_PY_UTIME_TICKS_PERIOD/2 ticks, but away in
both directions. For example, if tick value 'a' predates tick value 'b',
ticks_diff(a, b) will return negative value, and positive value otherwise.
But at positive value of MICROPY_PY_UTIME_TICKS_PERIOD/2-1, the result
of the function will wrap around to negative -MICROPY_PY_UTIME_TICKS_PERIOD/2,
in other words, if a follows b in more than MICROPY_PY_UTIME_TICKS_PERIOD/2 - 1
ticks, the function will "consider" a to actually predate b.
Based on the earlier discussed RFC. Practice showed that the most natural
order for arguments corresponds to mathematical subtraction:
ticks_diff(x, y) <=> x - y
Also, practice showed that in real life, it's hard to order events by time
of occurance a priori, events tend to miss deadlines, etc. and the expected
order breaks. And then there's a need to detect such cases. And ticks_diff
can be used exactly for this purpose, if it returns a signed, instead of
unsigned, value. E.g. if x is scheduled time for event, and y is the current
time, then if ticks_diff(x, y) < 0 then event has missed a deadline (and e.g.
needs to executed ASAP or skipped). Returning in this case a large unsigned
number (like ticks_diff behaved previously) doesn't make sense, and such
"large unsigned number" can't be reliably detected per our definition of
ticks_* function (we don't expose to user level maximum value, it can be
anything, relatively small or relatively large).
In order to have more fine-grained control over how builtin functions are
constructed, the MP_DECLARE_CONST_FUN_OBJ macros are made more specific,
with suffix of _0, _1, _2, _3, _VAR, _VAR_BETEEN or _KW. These names now
match the MP_DEFINE_CONST_FUN_OBJ macros.
Conflicts:
README.md - Kept Adafruit README.md intact.
py/emitglue.c - Added xtensa architecture as an OR of the define.
zephyr/README.md - Fixed spelling mistake.
As long as a port implement mp_hal_sleep_ms(), mp_hal_ticks_ms(), etc.
functions, it can just use standard implementations of utime.sleel_ms(),
utime.ticks_ms(), etc. Python-level functions.
This refactors ujson.loads(s) to behave as ujson.load(StringIO(s)).
Increase in code size is: 366 bytes for unix x86-64, 180 bytes for
stmhal, 84 bytes for esp8266.
As per discussion in #2449, using write requests instead of read requests
for I2C.scan() seems to support a larger number of devices, especially
ones that are write-only. Even a read-only I2C device has to implement
writes in order to be able to receive the address of the register to read.
Adds check that LZ offsets fall into the sliding dictionary used. This
catches a case when uzlib.DecompIO with a smaller dictionary is used
to decompress data which was compressed with a larger dictionary.
Previously, this would lead to producing invalid data or crash, now
an exception will be thrown.
The delay_half parameter must be specified by the port to set up the
timing of the software SPI. This allows the port to adjust the timing
value to better suit its timing characteristics, as well as provide a
more accurate printing of the baudrate.
There is no need to take src_len and dest_len arguments. The case of
reading-only with a single output byte (originally src_len=1, dest_len>1)
is now handled by using the output buffer as the input buffer, and using
memset to fill the output byte into this buffer. This simplifies the
implementations of the spi_transfer protocol function.
The memory read/write I2C functions now take an optional keyword-only
parameter that specifies the number of bits in the memory address.
Only mem-addrs that are a multiple of 8-bits are supported (otherwise
the behaviour is undefined).
Due to the integer type used for the address, for values larger than 32
bits, only 32 bits of address will be sent, and the rest will be padded
with 0s. Right now no exception is raised when that happens. For values
smaller than 8, no address is sent. Also no exception then.
Tested with a VL6180 sensor, which has 16-bit register addresses.
Due to code refactoring, this patch reduces stmhal and esp8266 builds
by about 50 bytes.
When the clock is too fast for the i2c slave, it can temporarily hold
down the scl line to signal to the master that it needs to wait. The
master should check the scl line when it is releasing it after
transmitting data, and wait for it to be released.
This change has been tested with a logic analyzer and an i2c slace
implemented on an atmega328p using its twi peripheral, clocked at 8Mhz.
Without the change, the i2c communication works up to aboy 150kHz
frequency, and above that results in the slave stuck in an unresponsive
state. With this change, communication has been tested to work up to
400kHz.
Adds horizontal scrolling. Right now, I'm just leaving the margins
created by the scrolling as they were -- so they will repeat the
edge of the framebuf. This is fast, and the user can always fill
the margins themselves.
There was a bug in `framebuf1_fill` function, that makes it leave a few
lines unfilled at the bottom if the height is not divisible by 8.
A similar bug is fixed in the scroll method.
The idea is that all ports can use these helper methods and only need to
provide initialisation of the SPI bus, as well as a single transfer
function. The coding pattern follows the stream protocol and helper
methods.
This is an object-oriented approach, where uos is only a proxy for the
methods on the vfs object. Some internals had to be exposed (the STATIC
keyword removed) for this to work.
Fixes#2338.
In `btree_seq()`, when `__bt_seq()` gets called with invalid
`flags` argument it will return `RET_ERROR` and it won't
initialize `val`. If field `data` of uninitialized `val`
is passed to `mp_obj_new_bytes()` it causes a segfault.
This goes bit against websocket nature (message-based communication),
as it ignores boundaries bertween messages, but may be very practical
to do simple things with websockets.
In the sense that while GET_FILE transfers its data, REPL still works.
This is done by requiring client to send 1-byte block before WebREPL
server transfers next block of data.
Storing a chain of pbuf was an original design of @pfalcon's lwIP socket
module. The problem with storing just one, like modlwip does is that
"peer closed connection" notification is completely asynchronous and out of
band. So, there may be following sequence of actions:
1. pbuf #1 arrives, and stored in a socket.
2. pbuf #2 arrives, and rejected, which causes lwIP to put it into a
queue to re-deliver later.
3. "Peer closed connection" is signaled, and socket is set at such status.
4. pbuf #1 is processed.
5. There's no stored pbufs in teh socket, and socket status is "peer closed
connection", so EOF is returned to a client.
6. pbuf #2 gets redelivered.
Apparently, there's no easy workaround for this, except to queue all
incoming pbufs in a socket. This may lead to increased memory pressure,
as number of pending packets would be regulated only by TCP/IP flow
control, whereas with previous setup lwIP had a global overlook of number
packets waiting for redelivery and could regulate them centrally.
Allows to translate C-level pin API to Python-level pin API. In other
words, allows to implement a pin class and Python which will be usable
for efficient C-coded algorithms, like bitbanging SPI/I2C, time_pulse,
etc.
The time stamp is taken from the RTC for all newly generated
or changed files. RTC must be maintained separately.
The dummy time stamp of Jan 1, 2000 is set in vfs.stat() for the
root directory, avoiding invalid time values.
The call to stat() returns a 10 element tuple consistent to the os.stat()
call. At the moment, the only relevant information returned are file
type and file size.
Using usual method of virtual method tables. Single virtual method,
ioctl, is defined currently for all operations. This universal and
extensible vtable-based method is also defined as a default MPHAL
GPIO implementation, but a specific port may override it with its
own implementation (e.g. close-ended, but very efficient, e.g. avoiding
virtual method dispatch).
Make dupterm subsystem close a term stream object when EOF or error occurs.
There's no other party than dupterm itself in a better position to do this,
and this is required to properly reclaim stream resources, especially if
multiple dupterm sessions may be established (e.g. as networking
connections).
Both read and write operations support variants where either a) a single
call is made to the undelying stream implementation and returned buffer
length may be less than requested, or b) calls are repeated until requested
amount of data is collected, shorter amount is returned only in case of
EOF or error.
These operations are available from the level of C support functions to be
used by other C modules to implementations of Python methods to be used in
user-facing objects.
The rationale of these changes is to allow to write concise and robust
code to work with *blocking* streams of types prone to short reads, like
serial interfaces and sockets. Particular object types may select "exact"
vs "once" types of methods depending on their needs. E.g., for sockets,
revc() and send() methods continue to be "once", while read() and write()
thus converted to "exactly" versions.
These changes don't affect non-blocking handling, e.g. trying "exact"
method on the non-blocking socket will return as much data as available
without blocking. No data available is continued to be signaled as None
return value to read() and write().
From the point of view of CPython compatibility, this model is a cross
between its io.RawIOBase and io.BufferedIOBase abstract classes. For
blocking streams, it works as io.BufferedIOBase model (guaranteeing
lack of short reads/writes), while for non-blocking - as io.RawIOBase,
returning None in case of lack of data (instead of raising expensive
exception, as required by io.BufferedIOBase). Such a cross-behavior
should be optimal for MicroPython needs.
Calling it from lwIP accept callback will lead incorrect functioning
and/or packet leaks if Python callback has any networking calls, due
to lwIP non-reentrancy. So, instead schedule "poll" callback to do
that, which will be called by lwIP when it does not perform networking
activities. "Poll" callback is called infrequently though (docs say
every 0.5s by default), so for better performance, lwIP needs to be
patched to call poll callback soon after accept callback, but when
current packet is already processed.
While just a websocket is enough for handling terminal part of WebREPL,
handling file transfer operations requires demultiplexing and acting
upon, which is encapsulated in _webrepl class provided by this module,
which wraps a websocket object.
To use: .setsockopt(SOL_SOCKET, 20, lambda sock: print(sock)). There's a
single underlying callback slot. For normal sockets, it serves as data
received callback, for listening sockets - connection arrived callback.
The idea is that if dupterm object can handle exceptions, it will handle
them itself. Otherwise, object state can be compromised and it's better
to terminate dupterm session. For example, disconnected socket will keep
throwing exceptions and dump messages about that.
When lwIP creates a incoming connection socket of a listen socket, it
sets its recv callback to one which discards incoming data. We set
proper callback only in accept() call, when we allocate Python-level
socket where we can queue incoming data. So, in lwIP accept callback
be sure to set recv callback to one which tells lwIP to not discard
incoming data.
This is strange asymmetry which is sometimes needed, e.g. for WebREPL: we
want to process only available input and no more; but for output, we want
to get rid of all of it, because there's no other place to buffer/store
it. This asymmetry is akin to CPython's asyncio asymmetry, where reads are
asynchronous, but writes are synchronous (asyncio doesn't expect them to
block, instead expects there to be (unlimited) buffering for any sync write
to completely immediately).
Per POSIX http://pubs.opengroup.org/onlinepubs/9699919799/functions/send.html :
"If space is not available at the sending socket to hold the message to be
transmitted, and the socket file descriptor does not have O_NONBLOCK set,
send() shall block until space is available. If space is not available at the
sending socket to hold the message to be transmitted, and the socket file
descriptor does have O_NONBLOCK set, send() shall fail [with EAGAIN]."
The code is based on Damien George's implementation for esp8266 port,
avoids use of global variables and associated re-entrancy issues, and
fixes returning stale data in some cases.
It can happen that a socket gets closed while the pbuf is not completely
drained by the application. It can also happen that a new pbuf comes in
via the recv callback, and then a "peer closed" event comes via the same
callback (pbuf=NULL) before the previous event has been handled. In both
cases the socket is closed but there is remaining data. This patch makes
sure such data is passed to the application.
This implements OO interface based on existing fsusermount code and with
minimal changes to it, to serve as a proof of concept of OO interface.
Examle of usage:
bdev = RAMFS(48)
uos.VfsFat.mkfs(bdev)
vfs = uos.VfsFat(bdev, "/ramdisk")
f = vfs.open("foo", "w")
f.write("hello!")
f.close()
This patch adds support to fsusermount for multiple block devices
(instead of just one). The maximum allowed is fixed at compile time by
the size of the fs_user_mount array accessed via MP_STATE_PORT, which
in turn is set by MICROPY_FATFS_VOLUMES.
With this patch, stmhal (which is still tightly coupled to fsusermount)
is also modified to support mounting multiple devices And the flash and
SD card are now just two block devices that are mounted at start up if
they exist (and they have special native code to make them more
efficient).
The new block protocol is:
- readblocks(self, n, buf)
- writeblocks(self, n, buf)
- ioctl(self, cmd, arg)
The new ioctl method handles the old sync and count methods, as well as
a new "get sector size" method.
The old protocol is still supported, and used if the device doesn't have
the ioctl method.
Per the previously discussed plan. mount() still stays backward-compatible,
and new mkfs() is rought and takes more args than needed. But is a step
in a forward direction.
Functions added are:
- randint
- randrange
- choice
- random
- uniform
They are enabled with configuration variable
MICROPY_PY_URANDOM_EXTRA_FUNCS, which is disabled by default. It is
enabled for unix coverage build and stmhal.
SHA1 is used in a number of protocols and algorithm originated 5 years ago
or so, in other words, it's in "wide use", and only newer protocols use
SHA2.
The implementation depends on axTLS enabled. TODO: Make separate config
option specifically for sha1().
Seedable and reproducible pseudo-random number generator. Implemented
functions are getrandbits(n) (n <= 32) and seed().
The algorithm used is Yasmarang by Ilya Levin:
http://www.literatecode.com/yasmarang
The first argument to the type.make_new method is naturally a uPy type,
and all uses of this argument cast it directly to a pointer to a type
structure. So it makes sense to just have it a pointer to a type from
the very beginning (and a const pointer at that). This patch makes
such a change, and removes all unnecessary casting to/from mp_obj_t.
This patch changes the type signature of .make_new and .call object method
slots to use size_t for n_args and n_kw (was mp_uint_t. Makes code more
efficient when mp_uint_t is larger than a machine word. Doesn't affect
ports when size_t and mp_uint_t have the same size.
Everyone loves to names similar things the same, then there're conflicts
between different libraries. The namespace prefix used is "CRYAL_", which
is weird, and that's good, as that minimizes chance of another conflict.
This basically introduces the MICROPY_MACHINE_MEM_GET_READ_ADDR
and MICROPY_MACHINE_MEM_GET_WRITE_ADDR macros. If one of them is
not defined, then a default identity function is provided.
Previously, sizeof() blindly assumed LAYOUT_NATIVE and tried to align
size even for packed LAYOUT_LITTLE_ENDIAN & LAYOUT_BIG_ENDIAN. As sizeof()
is implemented on a strucuture descriptor dictionary (not an structure
object), resolving this required passing layout type around.
This allows the mp_obj_t type to be configured to something other than a
pointer-sized primitive type.
This patch also includes additional changes to allow the code to compile
when sizeof(mp_uint_t) != sizeof(void*), such as using size_t instead of
mp_uint_t, and various casts.
Contains implementation of ?: (non-capturing groups), ?? (non-greedy ?),
as well as much improved robustness, and edge cases and error handling by
Amir Plivatsky (@ampli).
These MPHAL functions are intended to replace previously used HAL_Delay(),
HAL_GetTick() to provide better naming and MPHAL separation (they are
fully equivalent otherwise).
Also, refactor extmod/modlwip to use them.
This requires root access. And on recent Linux kernels, with
CONFIG_STRICT_DEVMEM option enabled, only address ranges listed in
/proc/iomem can be accessed. The above compiled-time option can be
however overriden with boot-time option "iomem=relaxed".
This also removed separate read/write paths - there unlikely would
be a case when they're different.
Now address comes first, and args related to struct type are groupped next.
Besides clear groupping, should help catch errors eagerly (e.g. forgetting
to pass address will error out).
Also, improve args number checking/reporting overall.
mp_obj_get_int_truncated will raise a TypeError if the argument is not
an integral type. Use mp_obj_int_get_truncated only when you know the
argument is a small or big int.
Previous to this patch the printing mechanism was a bit of a tangled
mess. This patch attempts to consolidate printing into one interface.
All (non-debug) printing now uses the mp_print* family of functions,
mainly mp_printf. All these functions take an mp_print_t structure as
their first argument, and this structure defines the printing backend
through the "print_strn" function of said structure.
Printing from the uPy core can reach the platform-defined print code via
two paths: either through mp_sys_stdout_obj (defined pert port) in
conjunction with mp_stream_write; or through the mp_plat_print structure
which uses the MP_PLAT_PRINT_STRN macro to define how string are printed
on the platform. The former is only used when MICROPY_PY_IO is defined.
With this new scheme printing is generally more efficient (less layers
to go through, less arguments to pass), and, given an mp_print_t*
structure, one can call mp_print_str for efficiency instead of
mp_printf("%s", ...). Code size is also reduced by around 200 bytes on
Thumb2 archs.
This simplifies the API for objects and reduces code size (by around 400
bytes on Thumb2, and around 2k on x86). Performance impact was measured
with Pystone score, but change was barely noticeable.
Previous to this patch, a big-int, float or imag constant was interned
(made into a qstr) and then parsed at runtime to create an object each
time it was needed. This is wasteful in RAM and not efficient. Now,
these constants are parsed straight away in the parser and turned into
objects. This allows constants with large numbers of digits (so
addresses issue #1103) and takes us a step closer to #722.
This cleans up vstr so that it's a pure "variable buffer", and the user
can decide whether they need to add a terminating null byte. In most
places where vstr is used, the vstr did not need to be null terminated
and so this patch saves code size, a tiny bit of RAM, and makes vstr
usage more efficient. When null termination is needed it must be
done explicitly using vstr_null_terminate.
With this patch str/bytes construction is streamlined. Always use a
vstr to build a str/bytes object. If the size is known beforehand then
use vstr_init_len to allocate only required memory. Otherwise use
vstr_init and the vstr will grow as needed. Then use
mp_obj_new_str_from_vstr to create a str/bytes object using the vstr
memory.
Saves code ROM: 68 bytes on stmhal, 108 bytes on bare-arm, and 336 bytes
on unix x64.
mp_obj_int_get_truncated is used as a "fast path" int accessor that
doesn't check for overflow and returns the int truncated to the machine
word size, ie mp_int_t.
Use mp_obj_int_get_truncated to fix struct.pack when packing maximum word
sized values.
Addresses issues #779 and #998.
Before, sizeof() could be applied to a structure field only if that field
was itself a structure. Now it can be applied to PTR and ARRAY fields too.
It's not possible to apply it to scalar fields though, because as soon as
scalar field (int or float) is dereferenced, its value is converted into
Python int/float value, and all original type info is lost. Moreover, we
allow sizeof of type definitions too, and there int is used to represent
(scalar) types. So, we have ambiguity what int may be - either dereferenced
scalar structure field, or encoded scalar type. So, rather throw an error
if user tries to apply sizeof() to int.
Teensy doesn't need to worry about overflows since all of
its timers are only 16-bit.
For PWM, the pulse width needs to be able to vary from 0..period+1
(pulse-width == period+1 corresponds to 100% PWM)
I couldn't test the 0xffffffff cases since we can't currently get a
period that big in python. With a prescaler of 0, that corresponds
to a freq of 0.039 (i.e. cycle every 25.56 seconds), and we can't
set that using freq or period.
I also tested both stmhal and teensy with floats disabled, which
required a few other code changes to compile.