I instrumented RTC_Handler and determined that on SAMD51 it was possible
for the interrupt to be delivered well before the actual overflow of the
RTC COUNT register (e.g., a value as small as 0xffff_fffd could be seen
at the time of overflow)
Rather than depending on the overflow interrupt coming in at the same time
as COUNT overflows (exactly), rely only on observed values of COUNT in
_get_count, overflowing when it wraps around from a high value to a low
one.
With this change, PLUS a second change so that it is possible to warp
the RTC counter close to an overflow and test in 20ms instead of 3 days,
there was no problem detected over 20000+ overflows. Before, a substantial
fraction (much greater than 10%) of overflows failed.
Fixes#5985
Change to common-hal/rtc/RTC.c for time warping (plus make rtc_old_count non-static):
```patch
void common_hal_rtc_set_calibration(int calibration) {
+
+ common_hal_mcu_disable_interrupts();
+
+ RTC->MODE0.COUNT.reg = 0xffffff00;
+ rtc_old_count = 0;
+ do {
+ while ((RTC->MODE0.SYNCBUSY.reg & (RTC_MODE0_SYNCBUSY_COUNTSYNC | RTC_MODE0_SYNCBUSY_COUNT)) != 0) { }
+ }
+ while(RTC->MODE0.COUNT.reg < 0xffffff00);
+ common_hal_mcu_enable_interrupts();
+
+ mp_printf(&mp_plat_print, "Warping RTC in calibration setter count=%08x rtc_old_count=%08x\n", RTC->MODE0.COUNT.reg, rtc_old_count);
```
Test program:
```python
import time
from rtc import RTC
i = 0
while True:
RTC().calibration = 1 # Warps to ~16ms before overflow, with patch to RTC code
t0 = time.monotonic_ns()
et = t0 + 20_000_000 # 20ms
while (t1 := time.monotonic_ns()) < et: pass
i += 1
print(f"{i:6d}: duration {t1-t0}")
if t1-t0 > 200_000_000: break
print()
```
- Add reset for autoreload. De-request ticks.
- Separate state a little more in autoreload.c
- Rename some routines.
- Remove redundant settings of CIRCUITPY_AUTORELOAD_DELAY_MS.
There is a race between when we run background tasks and when we
sleep. If an interrupt happens between the two, then we may delay
executing the background task. On some ports we checked this for
TinyUSB already. On iMX RT, we didn't which caused USB issues.
This PR makes it more generic for all background tasks including
USB.
Fixes#5086 and maybe others.
The EVSYS is used to generate an interrupt from the event. This
simplifies timing used in pulseio that conflicted with the
auto-reload countdown.
Fixes#3890
In #4683, tannewt noticed that uncrustify was not running on some
file in common-hal.
I investigated and found that it was not being run on a bunch of paths.
Rather than make incremental changes, I rewrote list_files to work
bsaed on regular expressions; these regular expressions are created from
the same git-style glob patterns.
I spot-checked some specific filenames after this change, and all looks good:
```
$ python3 tools/codeformat.py -v --dry-run tests/basics/int_small.py ports/raspberrypi/common-hal/pulseio/PulseIn.c extmod/virtpin.c tests/thread/thread_exit1.py ports/raspberrypi/background.h extmod/re1.5/recursiveloop.c
tools/codeformat.py -v --dry-run tests/basics/int_small.py ports/raspberrypi/common-hal/pulseio/PulseIn.c extmod/virtpin.c tests/thread/thread_exit1.py ports/raspberrypi/background.h extmod/re1.5/recursiveloop.c
uncrustify -c /home/jepler/src/circuitpython/tools/uncrustify.cfg -lC --no-backup extmod/virtpin.c ports/raspberrypi/background.h ports/raspberrypi/common-hal/pulseio/PulseIn.c
black --fast --line-length=99 -v tests/thread/thread_exit1.py
```
recursiveloop and int_small are excluded, while PulseIn, virtpin,
and background are included.
Testing running from a subdirectory (not _specifically_ supported though):
```
(cd ports && python3 ../tools/codeformat.py -v --dry-run raspberrypi/common-hal/pulseio/PulseIn.c ../extmod/virtpin.c)
../tools/codeformat.py -v --dry-run raspberrypi/common-hal/pulseio/PulseIn.c ../extmod/virtpin.c
uncrustify -c /home/jepler/src/circuitpython/tools/uncrustify.cfg -lC --no-backup ../extmod/virtpin.c raspberrypi/common-hal/pulseio/PulseIn.
```
As a side-effect, a bunch more files are re-formatted now. :-P
This changes lots of files to unify `board.h` across ports. It adds
`board_deinit` when CIRCUITPY_ALARM is set. `main.c` uses it to
deinit the board before deep sleeping (even when pretending.)
Deep sleep is now a two step process for the port. First, the
port should prepare to deep sleep based on the given alarms. It
should set alarms for both deep and pretend sleep. In particular,
the pretend versions should be set immediately so that we don't
miss an alarm as we shutdown. These alarms should also wake from
`port_idle_until_interrupt` which is used when pretending to deep
sleep.
Second, when real deep sleeping, `alarm_enter_deep_sleep` is called.
The port should set any alarms it didn't during prepare based on
data it saved internally during prepare.
ESP32-S2 sleep is a bit reorganized to locate more logic with
TimeAlarm. This will help it scale to more alarm types.
Fixes#3786
This allows calls to `allocate_memory()` while the VM is running, it will then allocate from the GC heap (unless there is a suitable hole among the supervisor allocations), and when the VM exits and the GC heap is freed, the allocation will be moved to the bottom of the former GC heap and transformed into a proper supervisor allocation. Existing movable allocations will also be moved to defragment the supervisor heap and ensure that the next VM run gets as much memory as possible for the GC heap.
By itself this breaks terminalio because it violates the assumption that supervisor_display_move_memory() still has access to an undisturbed heap to copy the tilegrid from. It will work in many cases, but if you're unlucky you will get garbled terminal contents after exiting from the vm run that created the display. This will be fixed in the following commit, which is separate to simplify review.
The issue was that a time.sleep() would set the RTC wake up
further into the future even if we wanted to tick every ms. Ticking
every ms is used to time the autoreload delay and without it,
autoreload doesn't work.
Fixes#3528
Not all boards have external flash or other components that make them
require 2.7V -- sometimes we can get considerably longer battery life
by decreasing this requirement.
In particular, pewpew10 and pewpew_m4 are powered directly from
battery, with no LDO, and should work fine down to 1.6V.
This introduces the new macro SAM_D5X_E5X. This is mostly the same
as SAMD51 before, except in a few places where a special case for
SAME54 is required
I noticed that this code was referring to samd-specific functionality,
and isn't enabled except in one samd board (pewpew10). Move it.
There is incomplte support for _pew in mimxrt10xx which then caused build
errors; adding a #if guard to check for _pew being enabled fixes it.
The _pew module is not likely to be important on mimxrt but I'll leave the
choice to remove it to someone else.