Implement a standard machine.bootloader() method for ESP32-series devices.
No default implementation, each board can enable it as required.
Signed-off-by: Luca Burelli <l.burelli@arduino.cc>
Some targets like the ESP32-S3 use the IDF Component Manager to provide
additional dependencies to the build. Make sure to include these extra
components when collecting properties used by MicroPython-specific build
steps, like qstr preprocessing.
Signed-off-by: Luca Burelli <l.burelli@arduino.cc>
This adds named-pins support to the esp32 port, following other ports.
Since the name of esp32 CPU pins is just GPIOx, where x is an integer, the
Pin.cpu dict is not supported and CPU pins are just retrieved via their
existing integer "name" (the cost of adding Pin.cpu is about 800 bytes,
mostly due to the additional qstrs).
What this commit supports is the Pin.board dict and constructing a pin by
names given by a board. These names are defined in a pins.csv file at the
board level. If no such file exists then Pin.board exists but is empty.
As part of this commit, pin and pin IRQ objects are optimised to reduce
their size in flash (by removing their gpio_num_t entry). The net change
in firmware size for this commit is about -132 bytes.
Signed-off-by: Damien George <damien@micropython.org>
This applies to all machine modules which have pins as arguments. Since
machine_pin_get_id() calls pin_find(), these pin arguments may be at the
moment either integer objects or Pin objects. That allows for instance to
write
uart = UART(1, tx=Pin(4), rx=Pin(5))
instead of
uart = UART(1, tx=4, rx=5)
which is consistent with other ports. Since this handling is done at a
single place in the code, extending that scheme to accept strings for named
pins is easy.
Signed-off-by: robert-hh <robert@hammelrath.com>
The new machine_pin_find() function accepts a Pin object and a integer
object as input and returns a pin object. That can be extended later to
accept a string object, once named pins are supported.
Signed-off-by: robert-hh <robert@hammelrath.com>
The legacy driver was deprecated in IDF v5, and crashes when the ISR
handler is called. Instead of fixing the legacy code, this commit reworks
the machine.Timer class to use the low-level HAL driver.
Tested on ESP32, ESP32S2, ESP32S3 and ESP32C3. Behaviour is the same as it
was before this commit, except the way the Timer object is printed, it now
gives more useful information (timer id, mode, period in ms).
Fixes issue #11970.
Signed-off-by: Damien George <damien@micropython.org>
This is a fix for commit bccbaa92b1fc6237f0f49a7f07cc194835fbf4e3:
- Should only wait for WIFI_EVENT_STA_START when invoked on the STA_IF
interface.
- The WIFI_EVENT_STA_START event is generated every time the STA_IF
interface is set active(True) and it was previously inactive, ie. not
only after calling esp_wifi_start().
- Also wait for WIFI_EVENT_STA_STOP when deactivating the interface.
- Also wait for relevant AP events.
Fixes issue #11910.
Signed-off-by: Glenn Moloney <glenn.moloney@gmail.com>
Signed-off-by: Damien George <damien@micropython.org>
Enabling mDNS put this firmware over the limit of the OTA partition size,
so tweak the compiler settings to reduce the firmware size.
Signed-off-by: Damien George <damien@micropython.org>
IDF v5.0 provides access to rssi value for received espnow packets via
recv_info arg to recv_cb().
Signed-off-by: Glenn Moloney <glenn.moloney@gmail.com>
This commit updates the esp32 port to work exclusively with ESP-IDF v5.
IDF v5 is needed for some of the newer ESP32 SoCs to work, and it also
cleans up a lot of the inconsistencies between existing SoCs (eg S2, S3,
and C3).
Support for IDF v4 is dropped because it's a lot of effort to maintain both
versions at the same time.
The following components have been verified to work on the various SoCs:
ESP32 ESP32-S2 ESP32-S3 ESP32-C3
build pass pass pass pass
SPIRAM pass pass pass N/A
REPL (UART) pass pass pass pass
REPL (USB) N/A pass pass N/A
filesystem pass pass pass pass
GPIO pass pass pass pass
SPI pass pass pass pass
I2C pass pass pass pass
PWM pass pass pass pass
ADC pass pass pass pass
WiFi STA pass pass pass pass
WiFi AP pass pass pass pass
BLE pass N/A pass pass
ETH pass -- -- --
PPP pass pass pass --
sockets pass pass pass pass
SSL pass ENOMEM pass pass
RMT pass pass pass pass
NeoPixel pass pass pass pass
I2S pass pass pass N/A
ESPNow pass pass pass pass
ULP-FSM pass pass pass N/A
SDCard pass N/A N/A pass
WDT pass pass pass pass
Signed-off-by: Damien George <damien@micropython.org>
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This function was made private/static in IDF commit
c67f4c2b4c2bb4b7740f988fc0f8a3e911e56afe, so it add back here.
Signed-off-by: Damien George <damien@micropython.org>
Mostly updates comments, but also renames the UASYNCIO enum value to
ASYNCIO.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The asyncio module now has much better CPython compatibility and
deserves to be just called "asyncio".
This will avoid people having to write `from uasyncio import asyncio`.
Renames all files, and updates port manifests to use the new path. Also
renames the built-in _uasyncio to _asyncio.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Commit c046b23ea29e0183c899a8dbe1da3bed3440a255 prevented frozen boot code
from being interrupted by Ctrl-C, but that means a corrupt filesystem will
forever lock up an esp32/esp8266 board. This commit fixes that by
explicitly enabling Ctrl-C before running the forever loop.
Signed-off-by: Damien George <damien@micropython.org>
This change enables the ULP (FSM) for all ESP32 variants rather than
requiring it to be enabled for each board specifically.
It also ensures the correct header file is included for each variant.
Lastly, it updates the IDF version we're builing against to v4.4.2, as that
version contains important fixes to make the ULP actually work on S2/S3
chips. See: https://github.com/espressif/esp-idf/commit/a0e3d48
Signed-off-by: Wilko Nienhaus <wilko.nienhaus@gmail.com>
This migrates the CMake variable `MICROPY_PORT_DIR` from the ESP-IDF
defined project to the component. Previously used instances of the variable
within the project definition have been migrated to
`CMAKE_CURRENT_LIST_DIR`. Within the component (the `main` subdirectory in
the ESP32 port) we define `MICROPY_PORT_DIR` using `CMAKE_CURRENT_LIST_DIR`
and subsequently use the `MICROPY_PORT_DIR` value in all locations where
`PROJECT` had previously been used.
Context:
In commit 9b90882146, initial support was added for building with the newly
introduced CMake support provided by the ESP-IDF.
Specifically, the commit message states:
> This commit adds support for building the esp32 port with CMake, and in
particular, it builds MicroPython as a component within the ESP-IDF. Using
CMake and the ESP-IDF build infrastructure makes it much easier to maintain
the port, especially with the various new ESP32 MCUs and their required
toolchains.
`PROJECT_DIR` is a variable populated by the ESP-IDF specifically and is
not stable when used with "[Pure CMake components][1]" as documented in the
ESP-IDF. It is intended to be used in the scope of the parent of the
current file (the "project") as opposed to the current file ("the
component"). Crossing into the parent scope like this works solely when the
"project" is MicroPython, but not when used as a component by other ESP-IDF
projects.
Analyzing this file, the intention is to reference the "Project" which in
the example is the parent directory. Within the [CMake variables][2]
documentation, there is one specifically defined for referencing the
directory for the CMake listfile currently being processed:
[`CMAKE_CURRENT_LIST_DIR`][3].
After making the change from `PROJECT_DIR` to `CMAKE_CURRENT_LIST_DIR`, the
reach into the parent scope defined by the ESP-IDF and the resulting CMake
interface violation is removed.
Similar to the component definition, the project `CMakeLists.txt` uses the
variable `CMAKE_SOURCE_DIR` which CMake defines as "The path to the top
level of the source tree." This commit changes the variable to
`CMAKE_CURRENT_LIST_DIR` for the reasons cited above.
[1]: https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/api-guides/build-system.html#writing-pure-cmake-components
[2]: https://cmake.org/cmake/help/latest/manual/cmake-variables.7.html
[3]: https://cmake.org/cmake/help/latest/variable/CMAKE_CURRENT_LIST_DIR.html
Signed-off-by: Brian 'redbeard' Harrington <redbeard@dead-city.org>
Following how mkrules.cmake works. This makes it easy for a port to enable
frozen code, by defining FROZEN_MANIFEST in its Makefile.
Signed-off-by: Damien George <damien@micropython.org>
This is a MicroPython-specific module that existed to support the old
version of uasyncio. It's undocumented and not enabled on all ports and
takes up code size unnecessarily.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Applies to drivers/examples/extmod/port-modules/tools.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Updates any includes, and references from Makefiles/CMake.
This essentially reverts what was done long ago in commit
136b5cbd7669e8318f8455fc2706da97a5b7994c
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This renames the builtin-modules, such that help('modules') and printing
the module object will show "module" rather than "umodule".
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Updates all `help()` output to use the phrase:
`For online docs please visit http://docs.micropython.org/`
Some ports previously used different wording, some pointed to the wrong
link. Also make all ports use `help.c` for consistency.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
These have by default FAT support. The SAMD21 build does not support FAT.
The nrf port also implements os.sync(), but has it's own copy of moduos.c.
Code size increases seen: 40 to 56 bytes.
Signed-off-by: robert-hh <robert@hammelrath.com>
Change UART clock source on S3/C3 so the UART can operate when CPU
frequency is below 80MHz. This allows the UART to remain operational when
using Dynamic Frequency Scaling (DFS).
Signed-off-by: Patrick Joy <patrick@joytech.com.au>
This commit enables the ULP for the S2 and S3 chips.
Note this is the FSM (Finite State Machine) ULP.
Signed-off-by: Patrick Joy <patrick@joytech.com.au>
When the network module was first introduced in the esp8266 port in
ee3fec3167db6e28869d37fb60058c884fb36264 there was only one interface (STA)
and, to save flash, the WLAN object was aliased to the network module,
which had just static methods for WLAN operations. This was subsequently
changed in 9e8396accbcb695e2fe9def666bfb31b26efde06 when the AP interface
was introduced, and the WLAN object became a true class.
But, network.WLAN remained a function that returned either the STA or AP
object and was never upgraded to the type itself. This scheme was then
copied over to the esp32 port when it was first introduced.
This commit changes network.WLAN from a function to a reference to the WLAN
type. This makes it consistent with other ports and network objects, and
allows accessing constants of network.WLAN without creating an instance.
Signed-off-by: Damien George <damien@micropython.org>
For esp32 and esp8266 this commit adds:
- a 'pm' option to WLAN.config() to set/get the wifi power saving mode; and
- PM_NONE, PM_PERFORMANCE and PM_POWERSAVE constants to the WLAN class.
This API should be general enough to use with all WLAN drivers.
Documentation is also added.
All ports that enable MICROPY_PY_MACHINE_PWM now enable these two
sub-options, so remove these sub-options altogether to force consistency in
new ports that implement machine.PWM.
Signed-off-by: Damien George <damien@micropython.org>
ESP-NOW is a proprietary wireless communication protocol which supports
connectionless communication between ESP32 and ESP8266 devices, using
vendor specific WiFi frames. This commit adds support for this protocol
through a new `espnow` module.
This commit builds on original work done by @nickzoic, @shawwwn and with
contributions from @zoland. Features include:
- Use of (extended) ring buffers in py/ringbuf.[ch] for robust IO.
- Signal strength (RSSI) monitoring.
- Core support in `_espnow` C module, extended by `espnow.py` module.
- Asyncio support via `aioespnow.py` module (separate to this commit).
- Docs provided at `docs/library/espnow.rst`.
Methods available in espnow.ESPNow class are:
- active(True/False)
- config(): set rx buffer size, read timeout and tx rate
- recv()/irecv()/recvinto() to read incoming messages from peers
- send() to send messages to peer devices
- any() to test if a message is ready to read
- irq() to set callback for received messages
- stats() returns transfer stats:
(tx_pkts, tx_pkt_responses, tx_failures, rx_pkts, lost_rx_pkts)
- add_peer(mac, ...) registers a peer before sending messages
- get_peer(mac) returns peer info: (mac, lmk, channel, ifidx, encrypt)
- mod_peer(mac, ...) changes peer info parameters
- get_peers() returns all peer info tuples
- peers_table supports RSSI signal monitoring for received messages:
{peer1: [rssi, time_ms], peer2: [rssi, time_ms], ...}
ESP8266 is a pared down version of the ESP32 ESPNow support due to code
size restrictions and differences in the low-level API. See docs for
details.
Also included is a test suite in tests/multi_espnow. This tests basic
espnow data transfer, multiple transfers, various message sizes, encrypted
messages (pmk and lmk), and asyncio support.
Initial work is from https://github.com/micropython/micropython/pull/4115.
Initial import of code is from:
https://github.com/nickzoic/micropython/tree/espnow-4115.
This allows updating mp_mbedtls_errors.c for the other mbedtls based ports
based on mbedTLS v2.28.1. This esp32-specific file will not be required
after updating IDF support to >= v4.4.1.
Signed-off-by: Carlos Gil <carlosgilglez@gmail.com>
Based on extmod/utime_mphal.c, with:
- a globals dict added
- time.localtime wrapper added
- time.time wrapper added
- time.time_ns function added
New configuration options are added for this module:
- MICROPY_PY_UTIME (enabled at basic features level)
- MICROPY_PY_UTIME_GMTIME_LOCALTIME_MKTIME
- MICROPY_PY_UTIME_TIME_TIME_NS
Signed-off-by: Damien George <damien@micropython.org>