Now the vibrato 'units' are 1.0 = one octave, 1/12 = one semitone,
1/1200 = one cent. Before, the units were somewhat arbitrary and were not
perceptually "symmetrical" around the base frequency.
For vibrato_depth = 1/12 and base frequency of 440,
before: pitch from 403.33 to 476.67Hz, not corresponding to any notes
after: pitch from 415.30 to 466.16Hz, corresponding to G# and A#
this has the side effect of making some notes more accurate, the new
frequency= value in the test is closer to the true midi frequency of
830.609...Hz.
and re-vamp overall envelope calculation again.
Now, if you set a low overall attack level like 0.2 this avoids the
"diminishing volume" effect when many notes sound at once. You need
simply choose a maximum attack level that is appropriate for the max
number of voices that will actually be played.
This class allows much more expressive sound synthesis:
* tremolo & vibrato
* arbitrary frequency
* different evelope & waveform per note
* all properties dynamically settable from Python code
This works for me (tested playing midi to raw files on host computer, as
well as a variant of the nunchuk instrument on pygamer)
it has to re-factor how/when MIDI reading occurs, because reasons.
endorse new test results
.. and allow `-1` to specify a note with no sustain (plucked)
Add address_little_endian for epaper displays with little endian
(low byte first) addresses.
Also clears allocated display and display bus memory so it has a
known state. The acep member wasn't always set so it varied
accidentally.
Fixes#7560. May fix#7778. Fixes#5119.
PicoDVI in CP support 640x480 and 800x480 on Feather DVI, Pico and
Pico W. 1 and 2 bit grayscale are full resolution. 8 and 16 bit
color are half resolution.
Memory layout is modified to give the top most 4k of ram to the
second core. Its MPU is used to prevent flash access after startup.
The port saved word is moved to a watchdog scratch register so that
it doesn't get overwritten by other things in RAM.
Right align status bar and scroll area. This normally gives a few
pixels of padding on the left hand side and improves the odds it is
readable in a case. Fixes#7562
Fixes c stack checking. The length was correct but the top was being
set to the current stack pointer instead of the correct top.
Fixes#7643
This makes Bitmap subscr raise IndexError instead of ValueError
when the index arguments are wrong.
In contrast to MidiTrack, this can be controlled from Python code,
turning notes on/off as desired.
Not tested on real HW yet, just the acceptance test based on checking
which notes it thinks are held internally.
a waveform object (array of 'h') can be passed in, replacing the
standard square wave. This waveform must be a 'single cycle waveform'
and some obvious things to pass in are sine, triangle or sawtooth waves,
but you can construct whatever you like.
This makes all the samples from Dan's collection register as 440Hz
when playing on pwmio or i2sout, using https://webaudiodemos.appspot.com/pitchdetect/index.html
to detect the frequency played (all should show as A 440Hz; an error
of up to 20 "cents" should be treated as OK)
There's an audible carrier with PWM output and the 8kHz samples. This is
probably a limitation of the peripheral which is documented as being for
input signals of 44 kHz or 48 kHz; the carrier frequency is a fixed
multiple of the sample frequency.
Closes#7800
* Enable dcache for OCRAM where the VM heap lives.
* Add CIRCUITPY_SWO_TRACE for pushing program counters out over the
SWO pin via the ITM module in the CPU. Exempt some functions from
instrumentation to reduce traffic and allow inlining.
* Place more functions in ITCM to handle errors using code in RAM-only
and speed up CP.
* Use SET and CLEAR registers for digitalio. The SDK does read, mask
and write.
* Switch to 2MiB reserved for CircuitPython code. Up from 1MiB.
* Run USB interrupts during flash erase and write.
* Allow storage writes from CP if the USB drive is disabled.
* Get perf bench tests running on CircuitPython and increase timeouts
so it works when instrumentation is active.
#7644 pointed out the need for better documentation.
To the best of my ability I noted the current behavior.
I think that there may be some ports that do not actually read
back the 'set' frequency value, but they are ports marked as beta
status (mimxrt10xx) or not maintained by us (cxd56).
This 2-in-1 PR started with the goal of support the Bangle.js 2
smartwatch with *no USB*.
* Adds "secure" DFU build support with a committed private key.
* Adds 3-bit color support with one dummy bit for the JDI memory display
* Allows nrf boards to have a board_background_task() run in RUN_BACKGROUND_TASK.
This is needed because the Bangle.js 2 uses the watchdog to reset.
* Renamed port_background_task() to port_background_tick() to indicate it
runs on tick, not RUN_BACKGROUND_TASK.
* Marks serial connected when the display terminal is inited. This means
that safe mode messages show up on the display.
ACep, 7-color epaper displays also pack 3 bits in 4. So, I added that
support as well.
* Adds 3-bit ACeP color support for 7-color e-paper displays. (Not
watch related but similar due to color depth.)
* Allows a refresh sequence instead of a single int command. The 7" ACeP
display requires a data byte for refresh.
* Adds optional delay after resetting the display. The ACeP displays
need this. (Probably to load LUTs from flash.)
* Adds a cleaning phase for ACeP displays before the real refresh.
For both:
* Add dither support to Palette.
* Palette no longer converts colors when set. Instead, it caches
converted colors at each index.
* ColorConverter now caches the last converted color. It should make
conversions faster for repeated colors (not dithering.)