Ujson should only worry about whitespace before JSON. This becomes apparent when you are using MP stream protocol to read directly from input buffers.
When you attempt to read(1) on a UART (and possibly other protocols) you have to wait for either the byte or the timeout.
Fixes:
- Waiting for a timeout after you have completed reading a correct and complete JSON off the input.
- Raising an OSError after reading a correct and complete JSON off the input.
- Eating more data than semantically owned off the input buffer.
- Blocking to start parsing JSON until the entire JSON body has been loaded into a potentially large, contiguous Python object.
Code you would write before:
```
line = board_busio_uart_port.read_line()
json_dict = json.loads(line)
```
or reaching for fixed buffers and swapping them around in Python.
Code that did not work before that does now:
```
json_dict = json.load(board_busio_uart_port)
```
- This removes the need for intermediate copies of data when reading JSON from micropython stream protocol inputs.
- It also increases total application speed by parsing JSON concurrently with receiving on boards that read from UART via DMA.
- It simplifies code that users write while improving their apps.
This code is shared by most parts, except where not all the #ifdefs
inside the tick function were present in all ports. This mostly would
have broken gamepad tick support on non-samd ports.
The "ms32" and "ms64" variants of the tick functions are introduced
because there is no 64-bit atomic read. Disabling interrupts avoids
a low probability bug where milliseconds could be off by ~49.5 days
once every ~49.5 days (2^32 ms).
Avoiding disabling interrupts when only the low 32 bits are needed is a minor
optimization.
Testing performed: on metro m4 express, USB still works and
time.monotonic_ns() still counts up
This is not strictly needed in order for #1056 to be resolved,
because the "make long-lived" machinery is unaware of this pointer.
However, as UARTs are assumed to be long-lived, this change is
beneficial because it moves the long-lived buffer into the upper
memory area with other long-lived objects, instead of remaining in
the low heap.
Its slimmed down by removing the qstr and bit packing TCC info.
The trinket m0 build actually grows by 20 bytes. The arduino zero
build shrinks by 188 bytes.
The following error occurs when building with gcc 5.4.1 (debian stretch):
common-hal/busio/UART.c:104:83: error: 'sercom_index' may be used uninitialized in this function [-Werror=maybe-uninitialized]
sercom_insts[rx->sercom[j].index]->USART.CTRLA.bit.ENABLE == 0) ||
It may be related to the addition of rx-only UARTs; gcc is unable
to infer the intended relationship between have_tx and sercom_index
being set (I am still not entirely confident of it myself)
1. UART: ported to ASF4. Allow rx-only and tx-only. Add .baudrate r/w property.
2. Make NeoPixel timing deterministic by turning off caches during NeoPixel writes.
3. Incorporate asf4 updates:
a. async USART driver
b. bringing Atmel START configuration closer to what we use
c. Clock initialization order now specified by CIRCUITPY_GCLK_INIT_1ST and _LAST.
4. supervisor/port.c: Move commented-out clock-test pin setting to correct location.