This moves the MICROPY_PORT_INIT_FUNC hook to the end of mp_init(), just
before MP_THREAD_GIL_ENTER(), so that everything (in particular the GIL
mutex) is intialized before the hook is called. MICROPY_PORT_DEINIT_FUNC
is also moved to be symmetric (but there is no functional change there).
If a port needs to perform initialisation earlier than
MICROPY_PORT_INIT_FUNC then it can do it before calling mp_init().
This commit adds backward-word, backward-kill-word, forward-word,
forward-kill-word sequences for the REPL, with bindings to Alt+F, Alt+B,
Alt+D and Alt+Backspace respectively. It is disabled by default and can be
enabled via MICROPY_REPL_EMACS_WORDS_MOVE.
Further enabling MICROPY_REPL_EMACS_EXTRA_WORDS_MOVE adds extra bindings
for these new sequences: Ctrl+Right, Ctrl+Left and Ctrl+W.
The features are enabled on unix micropython-coverage and micropython-dev.
Most types are in rodata/ROM, and mp_obj_base_t.type is a constant pointer,
so enforce this const-ness throughout the code base. If a type ever needs
to be modified (eg a user type) then a simple cast can be used.
Instances of the slice class are passed to __getitem__() on objects when
the user indexes them with a slice. In practice the majority of the time
(other than passing it on untouched) is to work out what the slice means in
the context of an array dimension of a particular length. Since Python 2.3
there has been a method on the slice class, indices(), that takes a
dimension length and returns the real start, stop and step, accounting for
missing or negative values in the slice spec. This commit implements such
a indices() method on the slice class.
It is configurable at compile-time via MICROPY_PY_BUILTINS_SLICE_INDICES,
disabled by default, enabled on unix, stm32 and esp32 ports.
This commit also adds new tests for slice indices and for slicing unicode
strings.
In CPython, EnvironmentError and IOError are now aliases of OSError so no
need to have them listed in the code. OverflowError inherits from
ArithmeticError because it's intended to be raised "when the result of an
arithmetic operation is too large to be represented" (per CPython docs),
and MicroPython aims to match the CPython exception hierarchy.
For the 3 ports that already make use of this feature (stm32, nrf and
teensy) this doesn't make any difference, it just allows to disable it from
now on.
For other ports that use pyexec, this decreases code size because the debug
printing code is dead (it can't be enabled) but the compiler can't deduce
that, so code is still emitted.
The qst value is always small enough to fit in 31-bits (even less) and
using a 32-bit shift rather than a 64-bit shift reduces code size by about
300 bytes.
A user-defined type that defines __iter__ doesn't need any memory to be
pre-allocated for its iterator (because it can't use such memory). So
optimise for this case by not allocating the iter-buf.
In commit 71a3d6ec3bd02c5bd13334537e1bd146bb643bad mp_setup_code_state was
changed from a 5-arg function to a 4-arg function, and at that point 5-arg
calls in native code were no longer needed. See also commit
4f9842ad80c235188955fd83317f715033a596c0.
Allows assigning attributes on class instances that implement their own
__setattr__. Both object.__setattr__ and super(A, b).__setattr__ will work
with this commit.
This makes the loading of viper-code-with-relocations a bit neater and
easier to understand, by treating the rodata/bss like a special object to
be loaded into the constant table (which is how it behaves).
We don't want to add a feature flag to .mpy files that indicate float
support because it will get complex and difficult to use. Instead the .mpy
is built using whatever precision it chooses (float or double) and the
native glue API will convert between this choice and what the host runtime
actually uses.
This commit adds a new tool called mpy_ld.py which is essentially a linker
that builds .mpy files directly from .o files. A new header file
(dynruntime.h) and makefile fragment (dynruntime.mk) are also included
which allow building .mpy files from C source code. Such .mpy files can
then be dynamically imported as though they were a normal Python module,
even though they are implemented in C.
Converting .o files directly (rather than pre-linked .elf files) allows the
resulting .mpy to be more efficient because it has more control over the
relocations; for example it can skip PLT indirection. Doing it this way
also allows supporting more architectures, such as Xtensa which has
specific needs for position-independent code and the GOT.
The tool supports targets of x86, x86-64, ARM Thumb and Xtensa (windowed
and non-windowed). BSS, text and rodata sections are supported, with
relocations to all internal sections and symbols, as well as relocations to
some external symbols (defined by dynruntime.h), and linking of qstrs.
Implements text, rodata and bss generalised relocations, as well as generic
qstr-object linking. This allows importing dynamic native modules on all
supported architectures in a unified way.
With the memcpy() call placed last it avoids the effects of registers
clobbering. It's definitely effective in non-inlined functions, but even
here it is still making a small difference. For example, on stm32, this
saves an extra `ldr` instruction to load `o->vstr` after the memcpy()
returns.
The string length being longer than the allowed qstr length can happen in
many locations, for example in the parser with very long variable names.
Without an explicit check that the length is within range (as done in this
patch) the code would exhibit crashes and strange behaviour with truncated
strings.
This commit adds a sys.implementation.mpy entry when the system supports
importing .mpy files. This entry is a 16-bit integer which encodes two
bytes of information from the header of .mpy files that are supported by
the system being run: the second and third bytes, .mpy version, and flags
and native architecture. This allows determining the supported .mpy file
dynamically by code, and also for the user to find it out by inspecting
this value. It's further possible to dynamically detect if the system
supports importing .mpy files by `hasattr(sys.implementation, 'mpy')`.
Replace the is_running field with a tri-state variable to indicate
running/not-running/pending-exception.
Update tests to cover the various cases.
This allows cancellation in uasyncio even if the coroutine hasn't been
executed yet. Fixes#5242
This wasn't necessary as the wrapped function already has a reference to
its globals. But it had a dual purpose of tracking whether the function
was currently running, so replace it with a bool.