The primary purpose of this commit is to make decompress default to
wbits=15 when the format is gzip (or auto format with gzip detected). The
idea is that someone decompressing a gzip stream should be able to use the
default `deflate.DeflateIO(f)` and it will "just work" for any input
stream, even though it uses a lot of memory.
This is done by making uzlib report gzip files as having wbits set to 15
in their header (where it previously only set the wbits out parameter for
zlib files), and then fixing up the logic in `deflateio_init_read`.
Updates the documentation to match.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This is the minimum C interface to allow a modem driver to be built in
Python. Interface is simple, with the intention that the micropython-lib
driver is the main (only) consumer of it.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
Via MICROPY_GC_SPLIT_HEAP_AUTO feature flag added in previous commit.
Tested on ESP32 GENERIC_SPIRAM and GENERIC_S3 configurations, with some
worst-case allocation patterns and the standard test suite.
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
When building for a specific board this must be specified in make
submodules. I.e. make BOARD=STM32F769DISC submodules.
Signed-off-by: Rene Straub <rene@see5.ch>
Also update zlib & gzip docs to describe the micropython-lib modules.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
- Update guide for extending built-in modules.
- Remove any last trace of umodule in other docs.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
In order to keep "import umodule" working, the existing mechanism is
replaced with a simple fallback to drop the "u".
This makes importing of built-ins no longer touch the filesystem, which
makes a typical built-in import take ~0.15ms rather than 3-5ms.
(Weak links were added in c14a81662c)
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
For SAMD21 devices, the board flash signals must be named in pins.csv as
FLASH_MOSI, FLASH_MISO, FLASH_SCK, FLASH_CS for creating the SPI object.
And rename the QSPI pins to QSPI_xxxx instead of FLASH_xxx.
Signed-off-by: robert-hh <robert@hammelrath.com>
Changes in this commit:
- Add a extra detail to each of the commands.
- Add more about handling options and arguments.
- Include shortcut commands that behave like real commands to the command
list (e.g. bootloader, rtc).
- Add extra information and reword to address common misconceptions, in
particular how commands chain together.
- Add additional examples showing some more interesting combinations.
- Add descriptions to each of the examples.
- Add pipx installation instructions.
- Describe how user-configuration works.
This work was sponsored by Google Season of Docs.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
- Make the docs match the new behavior which only allows certain modules
to be extended.
- List the modules that currently have the u-prefix.
- Add a note about the sys.path method for forcing a built-in import.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
By specifying rts=pin(x) and/or cts=Pin(x) in the constructor. The pad
numbers for the UART pins are fix in this case: TX must be at pad 0, RX at
pad 1, RTS at pad 2 and CTS at pad 3.
repr(uart) shows the pin names for rts and cts, if set. In case of a RX
overflow, the rx interrupt will be disabled instead of just discarding the
data. That allows RTS to act.
If RTS is inactive, still 2 bytes can be buffered in the FIFO.
Signed-off-by: robert-hh <robert@hammelrath.com>
This commit adds the "--escape-non-printable" option to the repl command.
When specified the REPL console will escape non-printable characters,
printing them as their hex value in square brackets.
This escaping behaviour was previously the default and only behaviour, but
it is now opt-in.
As part of this change, the speed of echoing device data to the console is
improved by by reading and writing in chunks.
Signed-off-by: Damien George <damien@micropython.org>
This commit enables the ULP for the S2 and S3 chips.
Note this is the FSM (Finite State Machine) ULP.
Signed-off-by: Patrick Joy <patrick@joytech.com.au>
Update docs/library/espnow.rst to add:
- guidance on using WLAN.config(pm=WLAN.PM_NONE) for reliable
espnow performance while also connected to a wifi access point;
- guidance on receiving encrypted messages;
- correction for default value of "encrypt" parameter (add_peer());
- guidance on use of ESPNow.irq(): recommand users readout all messages
in the buffer each time the callback is called.
Signed-off-by: Glenn Moloney <glenn.moloney@gmail.com>
Currently rp2.StateMachine.exec(instr_in) requires that the instr_in
parameter be a string representing the PIO assembly language instruction
to be encoded by rp2.asm_pio_encode(). This commit allows the parameter
to also be of integral type. This is useful if the exec() method is
being called often where the use of pre-encoded machine code is
desireable.
This commit still supports calls like:
sm.exec("set(0, 1)")
It also now supports calls like:
# Performed once earlier, maybe in __init__()
assembled_instr = rp2.asm_pio_encode("out(y, 8)", 0)
# Performed multiple times later as the PIO state machine is
# configured for its next run.
sm.exec(assembled_instr)
The existing examples/rp2/pio_exec.py and examples/rp2/pio_pwm.py that
exercise the rp2.StateMachine.exec() method still work with this change.
Signed-off-by: Adam Green <adamgrym@yahoo.com>
This documents when MPY v6.1 was released.
Also add some clarification on how the version is encoded in the header.
Signed-off-by: David Lechner <david@pybricks.com>
For esp32 and esp8266 this commit adds:
- a 'pm' option to WLAN.config() to set/get the wifi power saving mode; and
- PM_NONE, PM_PERFORMANCE and PM_POWERSAVE constants to the WLAN class.
This API should be general enough to use with all WLAN drivers.
Documentation is also added.
This adds the freq and duty_u16 keyword settings to the constructor, and
sometimes other details in the PWM section.
For mimxrt a clarification regarding the PWM invert argument was added, and
for rp2 a few words were spent on PWM output pairs of a channel/slice.
The PWM.init() method has been added. Calling init() without arguments
restarts a PWM channel stopped with deinit(). Otherwise single parameters
except for "device=n" can be changed again. The device can only be
specified once, either in the constructor or the first init() call.
Also simplify get_pwm_config() and get_adc_config(), and shrink the PWM
object.
ESP-NOW is a proprietary wireless communication protocol which supports
connectionless communication between ESP32 and ESP8266 devices, using
vendor specific WiFi frames. This commit adds support for this protocol
through a new `espnow` module.
This commit builds on original work done by @nickzoic, @shawwwn and with
contributions from @zoland. Features include:
- Use of (extended) ring buffers in py/ringbuf.[ch] for robust IO.
- Signal strength (RSSI) monitoring.
- Core support in `_espnow` C module, extended by `espnow.py` module.
- Asyncio support via `aioespnow.py` module (separate to this commit).
- Docs provided at `docs/library/espnow.rst`.
Methods available in espnow.ESPNow class are:
- active(True/False)
- config(): set rx buffer size, read timeout and tx rate
- recv()/irecv()/recvinto() to read incoming messages from peers
- send() to send messages to peer devices
- any() to test if a message is ready to read
- irq() to set callback for received messages
- stats() returns transfer stats:
(tx_pkts, tx_pkt_responses, tx_failures, rx_pkts, lost_rx_pkts)
- add_peer(mac, ...) registers a peer before sending messages
- get_peer(mac) returns peer info: (mac, lmk, channel, ifidx, encrypt)
- mod_peer(mac, ...) changes peer info parameters
- get_peers() returns all peer info tuples
- peers_table supports RSSI signal monitoring for received messages:
{peer1: [rssi, time_ms], peer2: [rssi, time_ms], ...}
ESP8266 is a pared down version of the ESP32 ESPNow support due to code
size restrictions and differences in the low-level API. See docs for
details.
Also included is a test suite in tests/multi_espnow. This tests basic
espnow data transfer, multiple transfers, various message sizes, encrypted
messages (pmk and lmk), and asyncio support.
Initial work is from https://github.com/micropython/micropython/pull/4115.
Initial import of code is from:
https://github.com/nickzoic/micropython/tree/espnow-4115.
Changes in this commit:
- Change MICROPY_HW_BOARD_NAME definition to match the product name.
- Rename board folder's name to match the product name style.
- Change related files like Makefile, document descriptions, test cases, CI
and tools.
Signed-off-by: Takeo Takahashi <takeo.takahashi.xv@renesas.com>
This replaces the previous pending operation queue (that used to also be
shared with pending server notify/indicate ops) with a single pending
operation per connection. This allows the value handle to be correctly
passed to the Python-level events.
Also re-structure GATT client event handling to simplify the packet handler
functions.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Makes gatts_notify and gatts_indicate work in the same way: by default they
send the DB value, but you can manually override the payload.
In other words, makes gatts_indicate work the same as gatts_notify.
Note: This removes support for queuing notifications and indications on
btstack when the ACL buffer is full. This functionality will be
reimplemented in a future commit.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit adds support for the `timeout` keyword argument to machine.I2C
on the rp2 port, following how it's done on other ports.
The main motivation here is avoid the interpreter crashing due to infinite
loops when SDA is stuck low, which is quite common if the board gets reset
while reading from an I2C device.
A default timeout of 50ms is chosen because it's consistent with:
- Commit a707fe50b0 which used a timeout of
50,000us for zero-length writes on the rp2 port.
- The machine.SoftI2C class which uses 50,000us as the default timeout.
- The stm32 port's hardware I2C, which uses 50,000us for
I2C_POLL_DEFAULT_TIMEOUT_US.
This commit also fixes the default timeout on the esp32 port to be
consistent with the above, and updates the documentation for machine.I2C to
document this keyword argument.
This function seems to work fine in multi-core applications now.
The delay is now in units of microseconds instead of depending on the clock
speed, and is adjustable by board configuration headers.
Also added documentation.
By using the phase jitter between the DFLL48M clock and the FDPLL96M clock.
Even if both use the same reference source, they have a different jitter.
SysTick is driven by FDPLL96M, the us counter by DFLL48M. As a random
source, the us counter is read out on every SysTick and the value is used
to accumulate a simple multiply, add and xor register. According to tests
it creates about 30 bit random bit-flips per second. That mechanism will
pass quite a few RNG tests, has a suitable frequency distribution and
serves better than just the time after boot to seed the PRNG.