circuitpython/ports/atmel-samd/shared_dma.c

268 lines
11 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include "shared_dma.h"
#include "py/gc.h"
#include "py/mpstate.h"
#undef ENABLE
// We allocate two DMA resources for the entire lifecycle of the board (not the
// vm) because the general_dma resource will be shared between the REPL and SPI
// flash. Both uses must block each other in order to prevent conflict.
struct dma_resource audio_dma;
struct dma_resource general_dma_tx;
struct dma_resource general_dma_rx;
void init_shared_dma(void) {
struct dma_resource_config config;
dma_get_config_defaults(&config);
// See asf4_conf/hpl_dmac_config.h for initial settings for DMA channels
// DMA Channel 0: audio, highest priority,
// normal transfer on input, DAC 0 empty is trigger source, trigger on each beat, beat is one byte
// output enable true.
// asf3 settings:
//config.peripheral_trigger = DAC_DMAC_ID_EMPTY;
//config.trigger_action = DMA_TRIGGER_ACTION_BEAT;
//config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
//config.event_config.event_output_enable = true;
// Turn on the transfer complete interrupt so that the job_status changes to done.
g_chan_interrupt_flag[audio_dma.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
// Prioritize the RX channel over the TX channel because TX can cause an RX
// overflow.
// DMA Channel 1: rx channel,
// normal transfer on input, trigger on each beat, beat is one byte
//config.trigger_action = DMA_TRIGGER_ACTION_BEAT;
//config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
dma_allocate(&general_dma_rx, &config);
g_chan_interrupt_flag[general_dma_rx.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
// DMA Channel 1: rx channel,
// normal transfer on input, trigger on each beat, beat is one byte
//config.trigger_action = DMA_TRIGGER_ACTION_BEAT;
//config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
g_chan_interrupt_flag[general_dma_tx.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
// Be sneaky and reuse the active descriptor memory.
audio_dma.descriptor = &descriptor_section[audio_dma.channel_id];
general_dma_rx.descriptor = &descriptor_section[general_dma_rx.channel_id];
general_dma_tx.descriptor = &descriptor_section[general_dma_tx.channel_id];
}
static uint8_t sercom_index(Sercom* sercom) {
return ((uint32_t) sercom - (uint32_t) SERCOM0) / 0x400;
}
static void dma_configure(uint8_t channel, uint8_t trigsrc, bool output_event) {
system_interrupt_enter_critical_section();
/** Select the DMA channel and clear software trigger */
DMAC->CHID.reg = DMAC_CHID_ID(channel);
DMAC->CHCTRLA.reg &= ~DMAC_CHCTRLA_ENABLE;
DMAC->CHCTRLA.reg = DMAC_CHCTRLA_SWRST;
DMAC->SWTRIGCTRL.reg &= (uint32_t)(~(1 << channel));
uint32_t event_output_enable = 0;
if (output_event) {
event_output_enable = DMAC_CHCTRLB_EVOE;
}
DMAC->CHCTRLB.reg = DMAC_CHCTRLB_LVL(DMA_PRIORITY_LEVEL_0) |
DMAC_CHCTRLB_TRIGSRC(trigsrc) |
DMAC_CHCTRLB_TRIGACT(DMA_TRIGGER_ACTION_BEAT) |
event_output_enable;
system_interrupt_leave_critical_section();
}
int32_t shared_dma_write(Sercom* sercom, const uint8_t* buffer, uint32_t length) {
if (general_dma_tx.job_status != STATUS_OK) {
return general_dma_tx.job_status;
}
dma_configure(general_dma_tx.channel_id, sercom_index(sercom) * 2 + 2, false);
2018-01-02 21:25:41 -05:00
// Set up TX. There is no RX job.
struct dma_descriptor_config descriptor_config;
dma_descriptor_get_config_defaults(&descriptor_config);
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
descriptor_config.dst_increment_enable = false;
descriptor_config.block_transfer_count = length;
descriptor_config.source_address = ((uint32_t)buffer + length);
// DATA register is consistently addressed across all SERCOM modes.
descriptor_config.destination_address = ((uint32_t)&sercom->SPI.DATA.reg);
dma_descriptor_create(general_dma_tx.descriptor, &descriptor_config);
enum status_code status = dma_start_transfer_job(&general_dma_tx);
if (status != ERR_NONE) {
return status;
}
// Wait for the dma transfer to finish.
while (general_dma_tx.job_status == STATUS_BUSY) {}
// Wait for the SPI transfer to complete.
while (sercom->SPI.INTFLAG.bit.TXC == 0) {}
// This transmit will cause the RX buffer overflow but we're OK with that.
// So, read the garbage and clear the overflow flag.
while (sercom->SPI.INTFLAG.bit.RXC == 1) {
sercom->SPI.DATA.reg;
}
sercom->SPI.STATUS.bit.BUFOVF = 1;
sercom->SPI.INTFLAG.reg = SERCOM_SPI_INTFLAG_ERROR;
return general_dma_tx.job_status;
}
int32_t shared_dma_read(Sercom* sercom, uint8_t* buffer, uint32_t length, uint8_t tx) {
if (general_dma_tx.job_status != ERR_NONE) {
2018-01-02 21:25:41 -05:00
}
// Do write and read simultaneously. If buffer_out is NULL, write the tx byte over and over.
// If buffer_out is a real buffer, ignore tx.
enum status_code shared_dma_transfer(Sercom* sercom, uint8_t* buffer_out, uint8_t* buffer_in, uint32_t length, uint8_t tx) {
return general_dma_tx.job_status;
}
dma_configure(general_dma_tx.channel_id, sercom_index(sercom) * 2 + 2, false);
dma_configure(general_dma_rx.channel_id, sercom_index(sercom) * 2 + 1, false);
// Set up RX first.
struct dma_descriptor_config descriptor_config;
dma_descriptor_get_config_defaults(&descriptor_config);
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
descriptor_config.src_increment_enable = false;
descriptor_config.dst_increment_enable = true;
descriptor_config.block_transfer_count = length;
// DATA register is consistently addressed across all SERCOM modes.
descriptor_config.source_address = ((uint32_t)&sercom->SPI.DATA.reg);
2018-01-02 21:25:41 -05:00
descriptor_config.destination_address = ((uint32_t)buffer_in + length);
dma_descriptor_create(general_dma_rx.descriptor, &descriptor_config);
2018-01-02 21:25:41 -05:00
// Set up TX second.
dma_descriptor_get_config_defaults(&descriptor_config);
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE;
2018-01-02 21:25:41 -05:00
// Increment write address only if we have a real buffer.
descriptor_config.src_increment_enable = buffer_out != NULL;
descriptor_config.dst_increment_enable = false;
descriptor_config.block_transfer_count = length;
2018-01-02 21:25:41 -05:00
//
descriptor_config.source_address = ((uint32_t) (buffer_out != NULL ? buffer_out + length : &tx));
// DATA register is consistently addressed across all SERCOM modes.
descriptor_config.destination_address = ((uint32_t)&sercom->SPI.DATA.reg);
dma_descriptor_create(general_dma_tx.descriptor, &descriptor_config);
// Start the RX job first so we don't miss the first byte. The TX job clocks
// the output.
general_dma_rx.transfered_size = 0;
dma_start_transfer_job(&general_dma_rx);
general_dma_tx.transfered_size = 0;
dma_start_transfer_job(&general_dma_tx);
// Wait for the transfer to finish.
while (general_dma_rx.job_status == STATUS_BUSY) {}
while (sercom->SPI.INTFLAG.bit.RXC == 1) {}
return general_dma_rx.job_status;
}
bool allocate_block_counter() {
// Find a timer to count DMA block completions.
Tc *t = NULL;
Tc *tcs[TC_INST_NUM] = TC_INSTS;
for (uint8_t i = TC_INST_NUM; i > 0; i--) {
if (tcs[i - 1]->COUNT16.CTRLA.bit.ENABLE == 0) {
t = tcs[i - 1];
break;
}
}
if (t == NULL) {
return false;
}
MP_STATE_VM(audiodma_block_counter) = gc_alloc(sizeof(struct tc_module), false);
if (MP_STATE_VM(audiodma_block_counter) == NULL) {
return false;
}
// Don't bother setting the period. We set it before you playback anything.
struct tc_config config_tc;
tc_get_config_defaults(&config_tc);
config_tc.counter_size = TC_COUNTER_SIZE_16BIT;
config_tc.clock_prescaler = TC_CLOCK_PRESCALER_DIV1;
if (tc_init(MP_STATE_VM(audiodma_block_counter), t, &config_tc) != STATUS_OK) {
return false;
};
struct tc_events events_tc;
events_tc.generate_event_on_overflow = false;
events_tc.on_event_perform_action = true;
events_tc.event_action = TC_EVENT_ACTION_INCREMENT_COUNTER;
tc_enable_events(MP_STATE_VM(audiodma_block_counter), &events_tc);
// Connect the timer overflow event, which happens at the target frequency,
// to the DAC conversion trigger.
MP_STATE_VM(audiodma_block_event) = gc_alloc(sizeof(struct events_resource), false);
if (MP_STATE_VM(audiodma_block_event) == NULL) {
return false;
}
struct events_config config;
events_get_config_defaults(&config);
uint8_t user = EVSYS_ID_USER_TC3_EVU;
if (t == TC4) {
user = EVSYS_ID_USER_TC4_EVU;
} else if (t == TC5) {
user = EVSYS_ID_USER_TC5_EVU;
#ifdef TC6
} else if (t == TC6) {
user = EVSYS_ID_USER_TC6_EVU;
#endif
#ifdef TC7
} else if (t == TC7) {
user = EVSYS_ID_USER_TC7_EVU;
#endif
}
config.generator = EVSYS_ID_GEN_DMAC_CH_0;
config.path = EVENTS_PATH_ASYNCHRONOUS;
if (events_allocate(MP_STATE_VM(audiodma_block_event), &config) != STATUS_OK ||
events_attach_user(MP_STATE_VM(audiodma_block_event), user) != STATUS_OK) {
return false;
}
tc_enable(MP_STATE_VM(audiodma_block_counter));
tc_stop_counter(MP_STATE_VM(audiodma_block_counter));
return true;
}
void switch_audiodma_trigger(uint8_t trigger_dmac_id) {
dma_configure(audio_dma.channel_id, trigger_dmac_id, true);
}