circuitpython/ports/nrf/supervisor/qspi_flash.c

251 lines
8.1 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 hathach for Adafruit Industries
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "supervisor/spi_flash_api.h"
#include <stdint.h>
#include <string.h>
#include "py/mpconfig.h" // for EXTERNAL_FLASH_QSPI_DUAL
#include "nrfx_qspi.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "supervisor/shared/external_flash/common_commands.h"
#include "supervisor/shared/external_flash/qspi_flash.h"
2020-08-05 21:56:05 -04:00
// When USB is disconnected, disable QSPI in sleep mode to save energy
#if defined(MICROPY_QSPI_OFF_WHEN_SLEEP)
2020-08-05 21:56:05 -04:00
void qspi_enable(void)
{
if (NRF_QSPI->ENABLE) {
return;
}
nrf_qspi_enable(NRF_QSPI);
nrf_qspi_event_clear(NRF_QSPI, NRF_QSPI_EVENT_READY);
nrf_qspi_task_trigger(NRF_QSPI, NRF_QSPI_TASK_ACTIVATE);
uint32_t remaining_attempts = 100;
do {
if (nrf_qspi_event_check(NRF_QSPI, NRF_QSPI_EVENT_READY)) {
break;
}
NRFX_DELAY_US(10);
} while (--remaining_attempts);
}
2020-08-05 21:56:05 -04:00
void qspi_disable(void)
{
// Turn off QSPI when USB is disconnected
if (NRF_QSPI->ENABLE && !(NRF_POWER->USBREGSTATUS & POWER_USBREGSTATUS_VBUSDETECT_Msk)) {
// Keep CS high when QSPI is diabled
nrf_gpio_cfg_output(MICROPY_QSPI_CS);
nrf_gpio_pin_write(MICROPY_QSPI_CS, 1);
// Workaround to disable QSPI according to nRF52840 Revision 1 Errata V1.4 - 3.8
NRF_QSPI->TASKS_DEACTIVATE = 1;
*(volatile uint32_t *)0x40029054 = 1;
NRF_QSPI->ENABLE = 0;
}
}
#else
2020-08-05 21:56:05 -04:00
void qspi_enable(void)
{
}
void qspi_disable(void)
{
}
#endif
bool spi_flash_command(uint8_t command) {
2020-08-05 21:56:05 -04:00
qspi_enable();
nrf_qspi_cinstr_conf_t cinstr_cfg = {
.opcode = command,
.length = 1,
.io2_level = true,
.io3_level = true,
.wipwait = false,
.wren = false
};
return nrfx_qspi_cinstr_xfer(&cinstr_cfg, NULL, NULL) == NRFX_SUCCESS;
}
bool spi_flash_read_command(uint8_t command, uint8_t* response, uint32_t length) {
2020-08-05 21:56:05 -04:00
qspi_enable();
nrf_qspi_cinstr_conf_t cinstr_cfg = {
.opcode = command,
.length = length + 1,
.io2_level = true,
.io3_level = true,
.wipwait = false,
.wren = false
};
return nrfx_qspi_cinstr_xfer(&cinstr_cfg, NULL, response) == NRFX_SUCCESS;
}
bool spi_flash_write_command(uint8_t command, uint8_t* data, uint32_t length) {
2020-08-05 21:56:05 -04:00
qspi_enable();
nrf_qspi_cinstr_conf_t cinstr_cfg = {
.opcode = command,
.length = length + 1,
.io2_level = true,
.io3_level = true,
.wipwait = false,
.wren = false // We do this manually.
};
return nrfx_qspi_cinstr_xfer(&cinstr_cfg, data, NULL) == NRFX_SUCCESS;
}
bool spi_flash_sector_command(uint8_t command, uint32_t address) {
2020-08-05 21:56:05 -04:00
qspi_enable();
if (command != CMD_SECTOR_ERASE) {
return false;
}
return nrfx_qspi_erase(NRF_QSPI_ERASE_LEN_4KB, address) == NRFX_SUCCESS;
}
bool spi_flash_write_data(uint32_t address, uint8_t* data, uint32_t length) {
2020-08-05 21:56:05 -04:00
qspi_enable();
// TODO: In theory, this also needs to handle unaligned data and
// non-multiple-of-4 length. (in practice, I don't think the fat layer
// generates such writes)
return nrfx_qspi_write(data, length, address) == NRFX_SUCCESS;
}
bool spi_flash_read_data(uint32_t address, uint8_t* data, uint32_t length) {
2020-08-05 21:56:05 -04:00
qspi_enable();
int misaligned = ((intptr_t)data) & 3;
// If the data is misaligned, we need to read 4 bytes
// into an aligned buffer, and then copy 1, 2, or 3 bytes from the aligned
// buffer to data.
if(misaligned) {
int sz = 4 - misaligned;
__attribute__((aligned(4))) uint8_t buf[4];
if(nrfx_qspi_read(buf, 4, address) != NRFX_SUCCESS) {
return false;
}
memcpy(data, buf, sz);
data += sz;
address += sz;
length -= sz;
}
// nrfx_qspi_read works in 4 byte increments, though it doesn't
// signal an error if sz is not a multiple of 4. Read (directly into data)
// all but the last 1, 2, or 3 bytes depending on the (remaining) length.
uint32_t sz = length & ~(uint32_t)3;
if(nrfx_qspi_read(data, sz, address) != NRFX_SUCCESS) {
return false;
}
data += sz;
address += sz;
length -= sz;
// Now, if we have any bytes left over, we must do a final read of 4
// bytes and copy 1, 2, or 3 bytes to data.
if(length) {
__attribute__((aligned(4))) uint8_t buf[4];
if(nrfx_qspi_read(buf, 4, address) != NRFX_SUCCESS) {
return false;
}
memcpy(data, buf, length);
}
return true;
}
void spi_flash_init(void) {
// Init QSPI flash
nrfx_qspi_config_t qspi_cfg = {
.xip_offset = 0,
.pins = {
.sck_pin = MICROPY_QSPI_SCK,
.csn_pin = MICROPY_QSPI_CS,
.io0_pin = MICROPY_QSPI_DATA0,
.io1_pin = NRF_QSPI_PIN_NOT_CONNECTED,
.io2_pin = NRF_QSPI_PIN_NOT_CONNECTED,
.io3_pin = NRF_QSPI_PIN_NOT_CONNECTED,
},
.prot_if = {
.readoc = NRF_QSPI_READOC_FASTREAD,
.writeoc = NRF_QSPI_WRITEOC_PP,
.addrmode = NRF_QSPI_ADDRMODE_24BIT,
.dpmconfig = false
},
.phy_if = {
.sck_freq = NRF_QSPI_FREQ_32MDIV16, // Start at a slow 2MHz and speed up once we know what we're talking to.
.sck_delay = 10, // min time CS must stay high before going low again. in unit of 62.5 ns
.spi_mode = NRF_QSPI_MODE_0,
.dpmen = false
},
.irq_priority = 7,
};
#if EXTERNAL_FLASH_QSPI_DUAL
qspi_cfg.pins.io1_pin = MICROPY_QSPI_DATA1;
qspi_cfg.prot_if.readoc = NRF_QSPI_READOC_READ2O;
qspi_cfg.prot_if.writeoc = NRF_QSPI_WRITEOC_PP2O;
#else
qspi_cfg.pins.io1_pin = MICROPY_QSPI_DATA1;
qspi_cfg.pins.io2_pin = MICROPY_QSPI_DATA2;
qspi_cfg.pins.io3_pin = MICROPY_QSPI_DATA3;
qspi_cfg.prot_if.readoc = NRF_QSPI_READOC_READ4IO;
qspi_cfg.prot_if.writeoc = NRF_QSPI_WRITEOC_PP4O;
#endif
// No callback for blocking API
nrfx_qspi_init(&qspi_cfg, NULL, NULL);
}
void spi_flash_init_device(const external_flash_device* device) {
check_quad_enable(device);
// Switch to single output line if the device doesn't support quad programs.
if (!device->supports_qspi_writes) {
NRF_QSPI->IFCONFIG0 &= ~QSPI_IFCONFIG0_WRITEOC_Msk;
NRF_QSPI->IFCONFIG0 |= QSPI_IFCONFIG0_WRITEOC_PP << QSPI_IFCONFIG0_WRITEOC_Pos;
}
// Speed up as much as we can.
// Start at 16 MHz and go down.
// At 32 MHz GD25Q16C doesn't work reliably on Feather 52840, even though it should work up to 104 MHz.
// sckfreq = 0 is 32 Mhz
// sckfreq = 1 is 16 MHz, etc.
uint8_t sckfreq = 1;
while (32000000 / (sckfreq + 1) > device->max_clock_speed_mhz * 1000000 && sckfreq < 16) {
sckfreq += 1;
}
NRF_QSPI->IFCONFIG1 &= ~QSPI_IFCONFIG1_SCKFREQ_Msk;
NRF_QSPI->IFCONFIG1 |= sckfreq << QSPI_IFCONFIG1_SCKFREQ_Pos;
}