/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 hathach for Adafruit Industries * Copyright (c) 2018 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "supervisor/spi_flash_api.h" #include #include #include "py/mpconfig.h" // for EXTERNAL_FLASH_QSPI_DUAL #include "nrfx_qspi.h" #include "shared-bindings/microcontroller/__init__.h" #include "supervisor/shared/external_flash/common_commands.h" #include "supervisor/shared/external_flash/qspi_flash.h" // When USB is disconnected, disable QSPI in sleep mode to save energy #if defined(MICROPY_QSPI_OFF_WHEN_SLEEP) void qspi_enable(void) { if (NRF_QSPI->ENABLE) { return; } nrf_qspi_enable(NRF_QSPI); nrf_qspi_event_clear(NRF_QSPI, NRF_QSPI_EVENT_READY); nrf_qspi_task_trigger(NRF_QSPI, NRF_QSPI_TASK_ACTIVATE); uint32_t remaining_attempts = 100; do { if (nrf_qspi_event_check(NRF_QSPI, NRF_QSPI_EVENT_READY)) { break; } NRFX_DELAY_US(10); } while (--remaining_attempts); } void qspi_disable(void) { // Turn off QSPI when USB is disconnected if (NRF_QSPI->ENABLE && !(NRF_POWER->USBREGSTATUS & POWER_USBREGSTATUS_VBUSDETECT_Msk)) { // Keep CS high when QSPI is diabled nrf_gpio_cfg_output(MICROPY_QSPI_CS); nrf_gpio_pin_write(MICROPY_QSPI_CS, 1); // Workaround to disable QSPI according to nRF52840 Revision 1 Errata V1.4 - 3.8 NRF_QSPI->TASKS_DEACTIVATE = 1; *(volatile uint32_t *)0x40029054 = 1; NRF_QSPI->ENABLE = 0; } } #else void qspi_enable(void) { } void qspi_disable(void) { } #endif bool spi_flash_command(uint8_t command) { qspi_enable(); nrf_qspi_cinstr_conf_t cinstr_cfg = { .opcode = command, .length = 1, .io2_level = true, .io3_level = true, .wipwait = false, .wren = false }; return nrfx_qspi_cinstr_xfer(&cinstr_cfg, NULL, NULL) == NRFX_SUCCESS; } bool spi_flash_read_command(uint8_t command, uint8_t* response, uint32_t length) { qspi_enable(); nrf_qspi_cinstr_conf_t cinstr_cfg = { .opcode = command, .length = length + 1, .io2_level = true, .io3_level = true, .wipwait = false, .wren = false }; return nrfx_qspi_cinstr_xfer(&cinstr_cfg, NULL, response) == NRFX_SUCCESS; } bool spi_flash_write_command(uint8_t command, uint8_t* data, uint32_t length) { qspi_enable(); nrf_qspi_cinstr_conf_t cinstr_cfg = { .opcode = command, .length = length + 1, .io2_level = true, .io3_level = true, .wipwait = false, .wren = false // We do this manually. }; return nrfx_qspi_cinstr_xfer(&cinstr_cfg, data, NULL) == NRFX_SUCCESS; } bool spi_flash_sector_command(uint8_t command, uint32_t address) { qspi_enable(); if (command != CMD_SECTOR_ERASE) { return false; } return nrfx_qspi_erase(NRF_QSPI_ERASE_LEN_4KB, address) == NRFX_SUCCESS; } bool spi_flash_write_data(uint32_t address, uint8_t* data, uint32_t length) { qspi_enable(); // TODO: In theory, this also needs to handle unaligned data and // non-multiple-of-4 length. (in practice, I don't think the fat layer // generates such writes) return nrfx_qspi_write(data, length, address) == NRFX_SUCCESS; } bool spi_flash_read_data(uint32_t address, uint8_t* data, uint32_t length) { qspi_enable(); int misaligned = ((intptr_t)data) & 3; // If the data is misaligned, we need to read 4 bytes // into an aligned buffer, and then copy 1, 2, or 3 bytes from the aligned // buffer to data. if(misaligned) { int sz = 4 - misaligned; __attribute__((aligned(4))) uint8_t buf[4]; if(nrfx_qspi_read(buf, 4, address) != NRFX_SUCCESS) { return false; } memcpy(data, buf, sz); data += sz; address += sz; length -= sz; } // nrfx_qspi_read works in 4 byte increments, though it doesn't // signal an error if sz is not a multiple of 4. Read (directly into data) // all but the last 1, 2, or 3 bytes depending on the (remaining) length. uint32_t sz = length & ~(uint32_t)3; if(nrfx_qspi_read(data, sz, address) != NRFX_SUCCESS) { return false; } data += sz; address += sz; length -= sz; // Now, if we have any bytes left over, we must do a final read of 4 // bytes and copy 1, 2, or 3 bytes to data. if(length) { __attribute__((aligned(4))) uint8_t buf[4]; if(nrfx_qspi_read(buf, 4, address) != NRFX_SUCCESS) { return false; } memcpy(data, buf, length); } return true; } void spi_flash_init(void) { // Init QSPI flash nrfx_qspi_config_t qspi_cfg = { .xip_offset = 0, .pins = { .sck_pin = MICROPY_QSPI_SCK, .csn_pin = MICROPY_QSPI_CS, .io0_pin = MICROPY_QSPI_DATA0, .io1_pin = NRF_QSPI_PIN_NOT_CONNECTED, .io2_pin = NRF_QSPI_PIN_NOT_CONNECTED, .io3_pin = NRF_QSPI_PIN_NOT_CONNECTED, }, .prot_if = { .readoc = NRF_QSPI_READOC_FASTREAD, .writeoc = NRF_QSPI_WRITEOC_PP, .addrmode = NRF_QSPI_ADDRMODE_24BIT, .dpmconfig = false }, .phy_if = { .sck_freq = NRF_QSPI_FREQ_32MDIV16, // Start at a slow 2MHz and speed up once we know what we're talking to. .sck_delay = 10, // min time CS must stay high before going low again. in unit of 62.5 ns .spi_mode = NRF_QSPI_MODE_0, .dpmen = false }, .irq_priority = 7, }; #if EXTERNAL_FLASH_QSPI_DUAL qspi_cfg.pins.io1_pin = MICROPY_QSPI_DATA1; qspi_cfg.prot_if.readoc = NRF_QSPI_READOC_READ2O; qspi_cfg.prot_if.writeoc = NRF_QSPI_WRITEOC_PP2O; #else qspi_cfg.pins.io1_pin = MICROPY_QSPI_DATA1; qspi_cfg.pins.io2_pin = MICROPY_QSPI_DATA2; qspi_cfg.pins.io3_pin = MICROPY_QSPI_DATA3; qspi_cfg.prot_if.readoc = NRF_QSPI_READOC_READ4IO; qspi_cfg.prot_if.writeoc = NRF_QSPI_WRITEOC_PP4O; #endif // No callback for blocking API nrfx_qspi_init(&qspi_cfg, NULL, NULL); } void spi_flash_init_device(const external_flash_device* device) { check_quad_enable(device); // Switch to single output line if the device doesn't support quad programs. if (!device->supports_qspi_writes) { NRF_QSPI->IFCONFIG0 &= ~QSPI_IFCONFIG0_WRITEOC_Msk; NRF_QSPI->IFCONFIG0 |= QSPI_IFCONFIG0_WRITEOC_PP << QSPI_IFCONFIG0_WRITEOC_Pos; } // Speed up as much as we can. // Start at 16 MHz and go down. // At 32 MHz GD25Q16C doesn't work reliably on Feather 52840, even though it should work up to 104 MHz. // sckfreq = 0 is 32 Mhz // sckfreq = 1 is 16 MHz, etc. uint8_t sckfreq = 1; while (32000000 / (sckfreq + 1) > device->max_clock_speed_mhz * 1000000 && sckfreq < 16) { sckfreq += 1; } NRF_QSPI->IFCONFIG1 &= ~QSPI_IFCONFIG1_SCKFREQ_Msk; NRF_QSPI->IFCONFIG1 |= sckfreq << QSPI_IFCONFIG1_SCKFREQ_Pos; }