circuitpython/shared-module/displayio/__init__.c

300 lines
11 KiB
C
Raw Normal View History

#include <string.h>
#include "shared-module/displayio/__init__.h"
#include "lib/utils/interrupt_char.h"
2019-06-06 17:49:32 -04:00
#include "py/gc.h"
2019-02-15 16:52:25 -05:00
#include "py/reload.h"
#include "py/runtime.h"
#include "shared-bindings/board/__init__.h"
#include "shared-bindings/displayio/Bitmap.h"
#include "shared-bindings/displayio/Display.h"
#include "shared-bindings/displayio/Group.h"
#include "shared-bindings/displayio/Palette.h"
#include "shared-module/displayio/area.h"
#include "supervisor/shared/autoreload.h"
#include "supervisor/shared/display.h"
#include "supervisor/memory.h"
2019-01-17 17:45:29 -05:00
#include "supervisor/usb.h"
primary_display_t displays[CIRCUITPY_DISPLAY_LIMIT];
static inline void swap(int16_t* a, int16_t* b) {
int16_t temp = *a;
*a = *b;
*b = temp;
}
// Check for recursive calls to displayio_refresh_displays.
bool refresh_displays_in_progress = false;
void displayio_refresh_displays(void) {
if (mp_hal_is_interrupted()) {
return;
}
if (reload_requested) {
// Reload is about to happen, so don't redisplay.
2019-02-15 16:52:25 -05:00
return;
}
if (refresh_displays_in_progress) {
// Don't allow recursive calls to this routine.
return;
}
refresh_displays_in_progress = true;
for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) {
if (displays[i].display.base.type == NULL || displays[i].display.base.type == &mp_type_NoneType) {
// Skip null display.
continue;
}
displayio_display_obj_t* display = &displays[i].display;
2019-01-25 21:31:27 -05:00
displayio_display_update_backlight(display);
// Time to refresh at specified frame rate?
if (!displayio_display_frame_queued(display)) {
// Too soon. Try next display.
continue;
}
if (displayio_display_refresh_queued(display)) {
if (!displayio_display_begin_transaction(display)) {
// Can't acquire display bus; skip updating this display. Try next display.
continue;
}
displayio_display_end_transaction(display);
displayio_area_t whole_screen = {
.x1 = 0,
.y1 = 0,
.x2 = display->width,
.y2 = display->height
};
if (display->transpose_xy) {
swap(&whole_screen.x2, &whole_screen.y2);
}
uint16_t buffer_size = 512;
uint16_t subrectangles = 1;
uint16_t rows_per_buffer = displayio_area_height(&whole_screen);
if (displayio_area_size(&whole_screen) > buffer_size) {
rows_per_buffer = buffer_size / displayio_area_width(&whole_screen);
subrectangles = displayio_area_height(&whole_screen) / rows_per_buffer;
buffer_size = rows_per_buffer * displayio_area_width(&whole_screen);
}
uint32_t buffer[buffer_size / 2];
for (uint16_t j = 0; j < subrectangles; j++) {
displayio_area_t subrectangle = {
.x1 = 0,
.y1 = rows_per_buffer * j,
.x2 = displayio_area_width(&whole_screen),
.y2 = rows_per_buffer * (j + 1)
};
displayio_display_begin_transaction(display);
displayio_display_set_region_to_update(display, subrectangle.x1, subrectangle.y1,
subrectangle.x2, subrectangle.y2);
displayio_display_end_transaction(display);
// Handle display mirroring and transpose.
displayio_area_t transformed_subrectangle;
displayio_buffer_transform_t transform;
if (display->mirror_x) {
uint16_t width = displayio_area_width(&whole_screen);
transformed_subrectangle.x1 = width - subrectangle.x2;
transformed_subrectangle.x2 = width - subrectangle.x1;
} else {
transformed_subrectangle.x1 = subrectangle.x1;
transformed_subrectangle.x2 = subrectangle.x2;
}
if (display->mirror_y != display->transpose_xy) {
uint16_t height = displayio_area_height(&whole_screen);
transformed_subrectangle.y1 = height - subrectangle.y2;
transformed_subrectangle.y2 = height - subrectangle.y1;
} else {
transformed_subrectangle.y1 = subrectangle.y1;
transformed_subrectangle.y2 = subrectangle.y2;
}
transform.width = transformed_subrectangle.x2 - transformed_subrectangle.x1;
transform.height = transformed_subrectangle.y2 - transformed_subrectangle.y1;
if (display->transpose_xy) {
int16_t y1 = transformed_subrectangle.y1;
int16_t y2 = transformed_subrectangle.y2;
transformed_subrectangle.y1 = transformed_subrectangle.x1;
transformed_subrectangle.y2 = transformed_subrectangle.x2;
transformed_subrectangle.x1 = y1;
transformed_subrectangle.x2 = y2;
}
transform.transpose_xy = display->transpose_xy;
transform.mirror_x = display->mirror_x;
transform.mirror_y = display->mirror_y;
transform.scale = 1;
uint32_t mask[(buffer_size / 32) + 1];
for (uint16_t k = 0; k < (buffer_size / 32) + 1; k++) {
mask[k] = 0x00000000;
}
bool full_coverage = displayio_group_get_area(display->current_group, &transform, &transformed_subrectangle, mask, buffer);
if (!full_coverage) {
uint32_t index = 0;
uint32_t current_mask = 0;
for (int16_t y = subrectangle.y1; y < subrectangle.y2; y++) {
for (int16_t x = subrectangle.x1; x < subrectangle.x2; x++) {
if (index % 32 == 0) {
current_mask = mask[index / 32];
}
if ((current_mask & (1 << (index % 32))) == 0) {
((uint16_t*) buffer)[index] = 0x0000;
}
index++;
}
}
}
if (!displayio_display_begin_transaction(display)) {
// Can't acquire display bus; skip the rest of the data. Try next display.
break;
}
displayio_display_send_pixels(display, buffer, buffer_size / 2);
displayio_display_end_transaction(display);
// TODO(tannewt): Make refresh displays faster so we don't starve other
// background tasks.
usb_background();
}
}
displayio_display_finish_refresh(display);
}
// All done.
refresh_displays_in_progress = false;
}
void common_hal_displayio_release_displays(void) {
for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) {
mp_const_obj_t bus_type = displays[i].fourwire_bus.base.type;
if (bus_type == NULL) {
continue;
} else if (bus_type == &displayio_fourwire_type) {
common_hal_displayio_fourwire_deinit(&displays[i].fourwire_bus);
} else if (bus_type == &displayio_parallelbus_type) {
common_hal_displayio_parallelbus_deinit(&displays[i].parallel_bus);
}
displays[i].fourwire_bus.base.type = &mp_type_NoneType;
}
for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) {
2019-01-25 21:31:27 -05:00
release_display(&displays[i].display);
displays[i].display.base.type = &mp_type_NoneType;
}
supervisor_stop_terminal();
}
void reset_displays(void) {
// The SPI buses used by FourWires may be allocated on the heap so we need to move them inline.
for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) {
if (displays[i].fourwire_bus.base.type != &displayio_fourwire_type) {
continue;
}
displayio_fourwire_obj_t* fourwire = &displays[i].fourwire_bus;
if (((uint32_t) fourwire->bus) < ((uint32_t) &displays) ||
((uint32_t) fourwire->bus) > ((uint32_t) &displays + CIRCUITPY_DISPLAY_LIMIT)) {
busio_spi_obj_t* original_spi = fourwire->bus;
2019-04-09 14:36:10 -04:00
#if BOARD_SPI
// We don't need to move original_spi if it is the board.SPI object because it is
// statically allocated already. (Doing so would also make it impossible to reference in
// a subsequent VM run.)
if (original_spi == common_hal_board_get_spi()) {
continue;
}
#endif
memcpy(&fourwire->inline_bus, original_spi, sizeof(busio_spi_obj_t));
fourwire->bus = &fourwire->inline_bus;
// Check for other displays that use the same spi bus and swap them too.
for (uint8_t j = i + 1; j < CIRCUITPY_DISPLAY_LIMIT; j++) {
if (displays[i].fourwire_bus.bus == original_spi) {
displays[i].fourwire_bus.bus = &fourwire->inline_bus;
}
}
}
}
for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) {
if (displays[i].display.base.type == NULL) {
continue;
}
displayio_display_obj_t* display = &displays[i].display;
2019-01-25 21:31:27 -05:00
display->auto_brightness = true;
common_hal_displayio_display_show(display, &circuitpython_splash);
}
2019-06-06 17:49:32 -04:00
}
void displayio_gc_collect(void) {
for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) {
if (displays[i].display.base.type == NULL) {
continue;
}
// Alternatively, we could use gc_collect_root over the whole object,
// but this is more precise, and is the only field that needs marking.
gc_collect_ptr(displays[i].display.current_group);
}
}
void displayio_area_shift(displayio_area_t* area, int16_t dx, int16_t dy) {
area->x1 += dx;
area->y1 += dy;
area->x2 += dx;
area->y2 += dy;
}
bool displayio_area_compute_overlap(const displayio_area_t* a,
const displayio_area_t* b,
displayio_area_t* overlap) {
overlap->x1 = a->x1;
if (b->x1 > overlap->x1) {
overlap->x1 = b->x1;
}
overlap->x2 = a->x2;
if (b->x2 < overlap->x2) {
overlap->x2 = b->x2;
}
if (overlap->x1 > overlap->x2) {
return false;
}
overlap->y1 = a->y1;
if (b->y1 > overlap->y1) {
overlap->y1 = b->y1;
}
overlap->y2 = a->y2;
if (b->y2 < overlap->y2) {
overlap->y2 = b->y2;
}
if (overlap->y1 > overlap->y2) {
return false;
}
return true;
}
uint16_t displayio_area_width(const displayio_area_t* area) {
return area->x2 - area->x1;
}
uint16_t displayio_area_height(const displayio_area_t* area) {
return area->y2 - area->y1;
}
uint32_t displayio_area_size(const displayio_area_t* area) {
return displayio_area_width(area) * displayio_area_height(area);
}
bool displayio_area_equal(const displayio_area_t* a, const displayio_area_t* b) {
return a->x1 == b->x1 &&
a->y1 == b->y1 &&
a->x2 == b->x2 &&
a->y2 == b->y2;
}