circuitpython/ports/stm32/modmachine.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

472 lines
17 KiB
C
Raw Normal View History

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2015 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "modmachine.h"
#include "py/gc.h"
#include "py/runtime.h"
#include "py/objstr.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "extmod/machine_bitstream.h"
#include "extmod/machine_mem.h"
#include "extmod/machine_signal.h"
#include "extmod/machine_pulse.h"
#include "extmod/machine_i2c.h"
#include "extmod/machine_spi.h"
#include "shared/runtime/pyexec.h"
#include "lib/oofatfs/ff.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "gccollect.h"
#include "irq.h"
#include "powerctrl.h"
#include "pybthread.h"
#include "rng.h"
#include "storage.h"
#include "pin.h"
#include "timer.h"
#include "usb.h"
#include "rtc.h"
#include "i2c.h"
#include "spi.h"
#include "uart.h"
#include "wdt.h"
#if defined(STM32L0)
// L0 does not have a BOR, so use POR instead
#define RCC_CSR_BORRSTF RCC_CSR_PORRSTF
#endif
#if defined(STM32L4) || defined(STM32WB)
// L4 does not have a POR, so use BOR instead
#define RCC_CSR_PORRSTF RCC_CSR_BORRSTF
#endif
#if defined(STM32H7)
#define RCC_SR RSR
#define RCC_SR_IWDGRSTF RCC_RSR_IWDG1RSTF
#define RCC_SR_WWDGRSTF RCC_RSR_WWDG1RSTF
#define RCC_SR_PORRSTF RCC_RSR_PORRSTF
#define RCC_SR_BORRSTF RCC_RSR_BORRSTF
#define RCC_SR_PINRSTF RCC_RSR_PINRSTF
#define RCC_SR_RMVF RCC_RSR_RMVF
#else
#define RCC_SR CSR
#define RCC_SR_IWDGRSTF RCC_CSR_IWDGRSTF
#define RCC_SR_WWDGRSTF RCC_CSR_WWDGRSTF
#define RCC_SR_PORRSTF RCC_CSR_PORRSTF
#define RCC_SR_BORRSTF RCC_CSR_BORRSTF
#define RCC_SR_PINRSTF RCC_CSR_PINRSTF
#define RCC_SR_RMVF RCC_CSR_RMVF
#endif
#define PYB_RESET_SOFT (0)
#define PYB_RESET_POWER_ON (1)
#define PYB_RESET_HARD (2)
#define PYB_RESET_WDT (3)
#define PYB_RESET_DEEPSLEEP (4)
STATIC uint32_t reset_cause;
void machine_init(void) {
#if defined(STM32F4)
if (PWR->CSR & PWR_CSR_SBF) {
// came out of standby
reset_cause = PYB_RESET_DEEPSLEEP;
PWR->CR |= PWR_CR_CSBF;
} else
#elif defined(STM32F7)
if (PWR->CSR1 & PWR_CSR1_SBF) {
// came out of standby
reset_cause = PYB_RESET_DEEPSLEEP;
PWR->CR1 |= PWR_CR1_CSBF;
} else
#elif defined(STM32H7)
if (PWR->CPUCR & PWR_CPUCR_SBF || PWR->CPUCR & PWR_CPUCR_STOPF) {
// came out of standby or stop mode
reset_cause = PYB_RESET_DEEPSLEEP;
PWR->CPUCR |= PWR_CPUCR_CSSF;
} else
#elif defined(STM32L4)
if (PWR->SR1 & PWR_SR1_SBF) {
// came out of standby
reset_cause = PYB_RESET_DEEPSLEEP;
PWR->SCR |= PWR_SCR_CSBF;
} else
#endif
{
// get reset cause from RCC flags
uint32_t state = RCC->RCC_SR;
if (state & RCC_SR_IWDGRSTF || state & RCC_SR_WWDGRSTF) {
reset_cause = PYB_RESET_WDT;
2018-05-28 04:10:53 -04:00
} else if (state & RCC_SR_PORRSTF
2020-05-14 09:56:26 -04:00
#if !defined(STM32F0) && !defined(STM32F412Zx)
2018-05-28 04:10:53 -04:00
|| state & RCC_SR_BORRSTF
#endif
) {
reset_cause = PYB_RESET_POWER_ON;
} else if (state & RCC_SR_PINRSTF) {
reset_cause = PYB_RESET_HARD;
} else {
// default is soft reset
reset_cause = PYB_RESET_SOFT;
}
}
// clear RCC reset flags
RCC->RCC_SR |= RCC_SR_RMVF;
}
void machine_deinit(void) {
// we are doing a soft-reset so change the reset_cause
reset_cause = PYB_RESET_SOFT;
}
// machine.info([dump_alloc_table])
// Print out lots of information about the board.
STATIC mp_obj_t machine_info(size_t n_args, const mp_obj_t *args) {
// get and print unique id; 96 bits
{
byte *id = (byte *)MP_HAL_UNIQUE_ID_ADDRESS;
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
}
printf("DEVID=0x%04x\nREVID=0x%04x\n", (unsigned int)HAL_GetDEVID(), (unsigned int)HAL_GetREVID());
// get and print clock speeds
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
{
2018-05-28 04:10:53 -04:00
#if defined(STM32F0)
printf("S=%u\nH=%u\nP1=%u\n",
(unsigned int)HAL_RCC_GetSysClockFreq(),
(unsigned int)HAL_RCC_GetHCLKFreq(),
(unsigned int)HAL_RCC_GetPCLK1Freq());
#else
printf("S=%u\nH=%u\nP1=%u\nP2=%u\n",
(unsigned int)HAL_RCC_GetSysClockFreq(),
(unsigned int)HAL_RCC_GetHCLKFreq(),
(unsigned int)HAL_RCC_GetPCLK1Freq(),
(unsigned int)HAL_RCC_GetPCLK2Freq());
2018-05-28 04:10:53 -04:00
#endif
}
// to print info about memory
{
printf("_etext=%p\n", &_etext);
printf("_sidata=%p\n", &_sidata);
printf("_sdata=%p\n", &_sdata);
printf("_edata=%p\n", &_edata);
printf("_sbss=%p\n", &_sbss);
printf("_ebss=%p\n", &_ebss);
printf("_sstack=%p\n", &_sstack);
printf("_estack=%p\n", &_estack);
printf("_ram_start=%p\n", &_ram_start);
printf("_heap_start=%p\n", &_heap_start);
printf("_heap_end=%p\n", &_heap_end);
printf("_ram_end=%p\n", &_ram_end);
}
// qstr info
{
size_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
printf("qstr:\n n_pool=%u\n n_qstr=%u\n n_str_data_bytes=%u\n n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
}
// GC info
{
gc_info_t info;
gc_info(&info);
printf("GC:\n");
printf(" %u total\n", info.total);
printf(" %u : %u\n", info.used, info.free);
printf(" 1=%u 2=%u m=%u\n", info.num_1block, info.num_2block, info.max_block);
}
// free space on flash
{
#if MICROPY_VFS_FAT
for (mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) {
if (strncmp("/flash", vfs->str, vfs->len) == 0) {
// assumes that it's a FatFs filesystem
fs_user_mount_t *vfs_fat = MP_OBJ_TO_PTR(vfs->obj);
DWORD nclst;
f_getfree(&vfs_fat->fatfs, &nclst);
printf("LFS free: %u bytes\n", (uint)(nclst * vfs_fat->fatfs.csize * 512));
break;
}
}
#endif
}
#if MICROPY_PY_THREAD
pyb_thread_dump();
#endif
if (n_args == 1) {
// arg given means dump gc allocation table
gc_dump_alloc_table();
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_info_obj, 0, 1, machine_info);
// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
STATIC mp_obj_t machine_unique_id(void) {
byte *id = (byte *)MP_HAL_UNIQUE_ID_ADDRESS;
return mp_obj_new_bytes(id, 12);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id);
// Resets the pyboard in a manner similar to pushing the external RESET button.
STATIC mp_obj_t machine_reset(void) {
powerctrl_mcu_reset();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset);
STATIC mp_obj_t machine_soft_reset(void) {
pyexec_system_exit = PYEXEC_FORCED_EXIT;
mp_raise_type(&mp_type_SystemExit);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_soft_reset_obj, machine_soft_reset);
// Activate the bootloader without BOOT* pins.
STATIC NORETURN mp_obj_t machine_bootloader(size_t n_args, const mp_obj_t *args) {
#if MICROPY_HW_ENABLE_USB
pyb_usb_dev_deinit();
#endif
#if MICROPY_HW_ENABLE_STORAGE
storage_flush();
#endif
__disable_irq();
#if MICROPY_HW_USES_BOOTLOADER
if (n_args == 0 || !mp_obj_is_true(args[0])) {
// By default, with no args given, we enter the custom bootloader (mboot)
powerctrl_enter_bootloader(0x70ad0000, MBOOT_VTOR);
}
if (n_args == 1 && mp_obj_is_str_or_bytes(args[0])) {
// With a string/bytes given, pass its data to the custom bootloader
size_t len;
const char *data = mp_obj_str_get_data(args[0], &len);
void *mboot_region = (void *)*((volatile uint32_t *)MBOOT_VTOR);
memmove(mboot_region, data, len);
powerctrl_enter_bootloader(0x70ad0080, MBOOT_VTOR);
}
#endif
#if defined(STM32F7) || defined(STM32H7)
powerctrl_enter_bootloader(0, 0x1ff00000);
#else
powerctrl_enter_bootloader(0, 0x00000000);
#endif
while (1) {
;
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_bootloader_obj, 0, 1, machine_bootloader);
// get or set the MCU frequencies
STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
// get
2018-05-28 04:10:53 -04:00
mp_obj_t tuple[] = {
mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
2018-05-28 04:10:53 -04:00
#if !defined(STM32F0)
mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
2018-05-28 04:10:53 -04:00
#endif
};
2018-05-28 04:10:53 -04:00
return mp_obj_new_tuple(MP_ARRAY_SIZE(tuple), tuple);
} else {
// set
#if defined(STM32F0) || defined(STM32L0) || defined(STM32L4)
mp_raise_NotImplementedError(MP_ERROR_TEXT("machine.freq set not supported yet"));
2018-05-28 04:10:53 -04:00
#else
mp_int_t sysclk = mp_obj_get_int(args[0]);
mp_int_t ahb = sysclk;
#if defined(STM32H7)
if (ahb > 200000000) {
ahb /= 2;
}
#endif
#if defined(STM32WB)
mp_int_t apb1 = ahb;
mp_int_t apb2 = ahb;
#else
mp_int_t apb1 = ahb / 4;
mp_int_t apb2 = ahb / 2;
#endif
if (n_args > 1) {
ahb = mp_obj_get_int(args[1]);
if (n_args > 2) {
apb1 = mp_obj_get_int(args[2]);
if (n_args > 3) {
apb2 = mp_obj_get_int(args[3]);
}
}
}
int ret = powerctrl_set_sysclk(sysclk, ahb, apb1, apb2);
if (ret == -MP_EINVAL) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid freq"));
} else if (ret < 0) {
void NORETURN __fatal_error(const char *msg);
__fatal_error("can't change freq");
}
return mp_const_none;
2018-05-28 04:10:53 -04:00
#endif
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 4, machine_freq);
// idle()
// This executies a wfi machine instruction which reduces power consumption
// of the MCU until an interrupt occurs, at which point execution continues.
STATIC mp_obj_t machine_idle(void) {
__WFI();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_idle_obj, machine_idle);
2018-12-26 06:44:09 -05:00
STATIC mp_obj_t machine_lightsleep(size_t n_args, const mp_obj_t *args) {
if (n_args != 0) {
mp_obj_t args2[2] = {MP_OBJ_NULL, args[0]};
pyb_rtc_wakeup(2, args2);
}
powerctrl_enter_stop_mode();
return mp_const_none;
}
2018-12-26 06:44:09 -05:00
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_lightsleep_obj, 0, 1, machine_lightsleep);
2018-12-26 06:44:09 -05:00
STATIC mp_obj_t machine_deepsleep(size_t n_args, const mp_obj_t *args) {
if (n_args != 0) {
mp_obj_t args2[2] = {MP_OBJ_NULL, args[0]};
pyb_rtc_wakeup(2, args2);
}
powerctrl_enter_standby_mode();
return mp_const_none;
}
2018-12-26 06:44:09 -05:00
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_deepsleep_obj, 0, 1, machine_deepsleep);
STATIC mp_obj_t machine_reset_cause(void) {
return MP_OBJ_NEW_SMALL_INT(reset_cause);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause);
STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&machine_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&machine_unique_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_soft_reset), MP_ROM_PTR(&machine_soft_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_bootloader), MP_ROM_PTR(&machine_bootloader_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_freq_obj) },
#if MICROPY_HW_ENABLE_RNG
{ MP_ROM_QSTR(MP_QSTR_rng), MP_ROM_PTR(&pyb_rng_get_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_idle), MP_ROM_PTR(&machine_idle_obj) },
2018-12-26 06:44:09 -05:00
{ MP_ROM_QSTR(MP_QSTR_sleep), MP_ROM_PTR(&machine_lightsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_lightsleep), MP_ROM_PTR(&machine_lightsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&machine_deepsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset_cause), MP_ROM_PTR(&machine_reset_cause_obj) },
#if 0
{ MP_ROM_QSTR(MP_QSTR_wake_reason), MP_ROM_PTR(&machine_wake_reason_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&machine_disable_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&machine_enable_irq_obj) },
#if MICROPY_PY_MACHINE_BITSTREAM
{ MP_ROM_QSTR(MP_QSTR_bitstream), MP_ROM_PTR(&machine_bitstream_obj) },
#endif
#if MICROPY_PY_MACHINE_PULSE
{ MP_ROM_QSTR(MP_QSTR_time_pulse_us), MP_ROM_PTR(&machine_time_pulse_us_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_mem8), MP_ROM_PTR(&machine_mem8_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem16), MP_ROM_PTR(&machine_mem16_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem32), MP_ROM_PTR(&machine_mem32_obj) },
{ MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pin_type) },
{ MP_ROM_QSTR(MP_QSTR_Signal), MP_ROM_PTR(&machine_signal_type) },
{ MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&pyb_rtc_type) },
{ MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&machine_adc_type) },
#if MICROPY_PY_MACHINE_I2C
#if MICROPY_HW_ENABLE_HW_I2C
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_hard_i2c_type) },
#else
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&mp_machine_soft_i2c_type) },
#endif
{ MP_ROM_QSTR(MP_QSTR_SoftI2C), MP_ROM_PTR(&mp_machine_soft_i2c_type) },
#endif
#if MICROPY_PY_MACHINE_SPI
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_hard_spi_type) },
{ MP_ROM_QSTR(MP_QSTR_SoftSPI), MP_ROM_PTR(&mp_machine_soft_spi_type) },
#endif
#if MICROPY_HW_ENABLE_I2S
{ MP_ROM_QSTR(MP_QSTR_I2S), MP_ROM_PTR(&machine_i2s_type) },
#endif
{ MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&pyb_uart_type) },
{ MP_ROM_QSTR(MP_QSTR_WDT), MP_ROM_PTR(&pyb_wdt_type) },
{ MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&machine_timer_type) },
#if 0
{ MP_ROM_QSTR(MP_QSTR_HeartBeat), MP_ROM_PTR(&pyb_heartbeat_type) },
{ MP_ROM_QSTR(MP_QSTR_SD), MP_ROM_PTR(&pyb_sd_type) },
// class constants
{ MP_ROM_QSTR(MP_QSTR_IDLE), MP_ROM_INT(PYB_PWR_MODE_ACTIVE) },
{ MP_ROM_QSTR(MP_QSTR_SLEEP), MP_ROM_INT(PYB_PWR_MODE_LPDS) },
{ MP_ROM_QSTR(MP_QSTR_DEEPSLEEP), MP_ROM_INT(PYB_PWR_MODE_HIBERNATE) },
#endif
{ MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(PYB_RESET_POWER_ON) },
{ MP_ROM_QSTR(MP_QSTR_HARD_RESET), MP_ROM_INT(PYB_RESET_HARD) },
{ MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(PYB_RESET_WDT) },
{ MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET), MP_ROM_INT(PYB_RESET_DEEPSLEEP) },
{ MP_ROM_QSTR(MP_QSTR_SOFT_RESET), MP_ROM_INT(PYB_RESET_SOFT) },
#if 0
{ MP_ROM_QSTR(MP_QSTR_WLAN_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_WLAN) },
{ MP_ROM_QSTR(MP_QSTR_PIN_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_GPIO) },
{ MP_ROM_QSTR(MP_QSTR_RTC_WAKE), MP_ROM_INT(PYB_SLP_WAKED_BY_RTC) },
#endif
};
STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table);
const mp_obj_module_t machine_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&machine_module_globals,
};