circuitpython/esp8266/common-hal/nativeio/SPI.c
2017-02-19 13:15:23 +01:00

177 lines
6.0 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "esp8266/ets_alt_task.h"
#include "esp8266/hspi.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/nativeio/SPI.h"
#include "py/nlr.h"
#include "eagle_soc.h"
#include "c_types.h"
#include "gpio.h"
extern const mcu_pin_obj_t pin_MTMS;
extern const mcu_pin_obj_t pin_MTCK;
extern const mcu_pin_obj_t pin_MTDI;
void common_hal_nativeio_spi_construct(nativeio_spi_obj_t *self,
const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi,
const mcu_pin_obj_t * miso) {
if (clock != &pin_MTMS || !((mosi == &pin_MTCK && miso == MP_OBJ_TO_PTR(mp_const_none)) ||
(mosi == MP_OBJ_TO_PTR(mp_const_none) && miso == &pin_MTDI))) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError,
"Pins not valid for SPI"));
}
uint32_t clock_div_flag = 0;
if (SPI_CLK_USE_DIV) {
clock_div_flag = 0x0001;
}
// Set bit 9 if 80MHz sysclock required
WRITE_PERI_REG(PERIPHS_IO_MUX, 0x105 | (clock_div_flag<<9));
// GPIO12 is HSPI MISO pin (Master Data In)
if (miso == &pin_MTDI) {
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, 2);
}
// GPIO13 is HSPI MOSI pin (Master Data Out)
if (mosi == &pin_MTCK) {
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, 2);
}
// GPIO14 is HSPI CLK pin (Clock)
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, 2);
spi_clock(HSPI, SPI_CLK_PREDIV, SPI_CLK_CNTDIV);
spi_tx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW);
spi_rx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW);
SET_PERI_REG_MASK(SPI_USER(HSPI), SPI_CS_SETUP|SPI_CS_HOLD);
CLEAR_PERI_REG_MASK(SPI_USER(HSPI), SPI_FLASH_MODE);
}
void common_hal_nativeio_spi_deinit(nativeio_spi_obj_t *self) {
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, 0);
PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTDI_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, 0);
PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTCK_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, 0);
PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTMS_U);
// Turn off outputs 12 - 14.
gpio_output_set(0x0, 0x0, 0x0, 0x7 << 12);
}
bool common_hal_nativeio_spi_configure(nativeio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
if (bits != 8) {
return false;
}
if (baudrate == 80000000L) {
// Special case for full speed.
spi_init_gpio(HSPI, SPI_CLK_80MHZ_NODIV);
spi_clock(HSPI, 0, 0);
} else if (baudrate > 40000000L) {
return false;
} else {
uint32_t divider = 40000000L / baudrate;
uint16_t prediv = MIN(divider, SPI_CLKDIV_PRE + 1);
uint16_t cntdiv = (divider / prediv) * 2; // cntdiv has to be even
if (cntdiv > SPI_CLKCNT_N + 1 || cntdiv == 0 || prediv == 0) {
return false;
}
spi_init_gpio(HSPI, SPI_CLK_USE_DIV);
spi_clock(HSPI, prediv, cntdiv);
}
spi_mode(HSPI, phase, polarity);
return true;
}
bool common_hal_nativeio_spi_try_lock(nativeio_spi_obj_t *self) {
bool success = false;
common_hal_mcu_disable_interrupts();
if (!self->locked) {
self->locked = true;
success = true;
}
common_hal_mcu_enable_interrupts();
return success;
}
bool common_hal_nativeio_spi_has_lock(nativeio_spi_obj_t *self) {
return self->locked;
}
void common_hal_nativeio_spi_unlock(nativeio_spi_obj_t *self) {
self->locked = false;
}
bool common_hal_nativeio_spi_write(nativeio_spi_obj_t *self,
const uint8_t * data, size_t len) {
size_t chunk_size = 1024;
size_t count = len / chunk_size;
size_t i = 0;
for (size_t j = 0; j < count; ++j) {
for (size_t k = 0; k < chunk_size; ++k) {
spi_tx8fast(HSPI, data[i]);
++i;
}
ets_loop_iter();
}
while (i < len) {
spi_tx8fast(HSPI, data[i]);
++i;
}
while (spi_busy(HSPI)) {}; // Wait for SPI to finish the last byte.
return true;
}
bool common_hal_nativeio_spi_read(nativeio_spi_obj_t *self,
uint8_t * data, size_t len, uint8_t write_value) {
// Process data in chunks, let the pending tasks run in between
size_t chunk_size = 1024; // TODO this should depend on baudrate
size_t count = len / chunk_size;
size_t i = 0;
uint32_t long_write_value = ((uint32_t) write_value) << 24 |
write_value << 16 |
write_value << 8 |
write_value;
for (size_t j = 0; j < count; ++j) {
for (size_t k = 0; k < chunk_size; ++k) {
data[i] = spi_transaction(HSPI, 0, 0, 0, 0, 0, 0, 8, long_write_value);
++i;
}
ets_loop_iter();
}
while (i < len) {
data[i] = spi_transaction(HSPI, 0, 0, 0, 0, 0, 0, 8, long_write_value);
++i;
}
return true;
}