Scott Shawcroft f28f8ba568 Split up nativeio.
This was done to allow greatly granularity when deciding what functionality
is built into each board's build. For example, this way pulseio can be
omitted to allow for something else such as touchio.
2017-04-10 13:32:19 -07:00

177 lines
5.9 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "esp8266/ets_alt_task.h"
#include "esp8266/hspi.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "common-hal/busio/SPI.h"
#include "py/nlr.h"
#include "eagle_soc.h"
#include "c_types.h"
#include "gpio.h"
extern const mcu_pin_obj_t pin_MTMS;
extern const mcu_pin_obj_t pin_MTCK;
extern const mcu_pin_obj_t pin_MTDI;
void common_hal_busio_spi_construct(busio_spi_obj_t *self,
const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi,
const mcu_pin_obj_t * miso) {
if (clock != &pin_MTMS || !((mosi == &pin_MTCK && miso == MP_OBJ_TO_PTR(mp_const_none)) ||
(mosi == MP_OBJ_TO_PTR(mp_const_none) && miso == &pin_MTDI))) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError,
"Pins not valid for SPI"));
}
uint32_t clock_div_flag = 0;
if (SPI_CLK_USE_DIV) {
clock_div_flag = 0x0001;
}
// Set bit 9 if 80MHz sysclock required
WRITE_PERI_REG(PERIPHS_IO_MUX, 0x105 | (clock_div_flag<<9));
// GPIO12 is HSPI MISO pin (Master Data In)
if (miso == &pin_MTDI) {
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, 2);
}
// GPIO13 is HSPI MOSI pin (Master Data Out)
if (mosi == &pin_MTCK) {
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, 2);
}
// GPIO14 is HSPI CLK pin (Clock)
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, 2);
spi_clock(HSPI, SPI_CLK_PREDIV, SPI_CLK_CNTDIV);
spi_tx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW);
spi_rx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW);
SET_PERI_REG_MASK(SPI_USER(HSPI), SPI_CS_SETUP|SPI_CS_HOLD);
CLEAR_PERI_REG_MASK(SPI_USER(HSPI), SPI_FLASH_MODE);
}
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, 0);
PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTDI_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, 0);
PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTCK_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, 0);
PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTMS_U);
// Turn off outputs 12 - 14.
gpio_output_set(0x0, 0x0, 0x0, 0x7 << 12);
}
bool common_hal_busio_spi_configure(busio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
if (bits != 8) {
return false;
}
if (baudrate == 80000000L) {
// Special case for full speed.
spi_init_gpio(HSPI, SPI_CLK_80MHZ_NODIV);
spi_clock(HSPI, 0, 0);
} else if (baudrate > 40000000L) {
return false;
} else {
uint32_t divider = 40000000L / baudrate;
uint16_t prediv = MIN(divider, SPI_CLKDIV_PRE + 1);
uint16_t cntdiv = (divider / prediv) * 2; // cntdiv has to be even
if (cntdiv > SPI_CLKCNT_N + 1 || cntdiv == 0 || prediv == 0) {
return false;
}
spi_init_gpio(HSPI, SPI_CLK_USE_DIV);
spi_clock(HSPI, prediv, cntdiv);
}
spi_mode(HSPI, phase, polarity);
return true;
}
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
bool success = false;
common_hal_mcu_disable_interrupts();
if (!self->locked) {
self->locked = true;
success = true;
}
common_hal_mcu_enable_interrupts();
return success;
}
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->locked;
}
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
self->locked = false;
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self,
const uint8_t * data, size_t len) {
size_t chunk_size = 1024;
size_t count = len / chunk_size;
size_t i = 0;
for (size_t j = 0; j < count; ++j) {
for (size_t k = 0; k < chunk_size; ++k) {
spi_tx8fast(HSPI, data[i]);
++i;
}
ets_loop_iter();
}
while (i < len) {
spi_tx8fast(HSPI, data[i]);
++i;
}
while (spi_busy(HSPI)) {}; // Wait for SPI to finish the last byte.
return true;
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self,
uint8_t * data, size_t len, uint8_t write_value) {
// Process data in chunks, let the pending tasks run in between
size_t chunk_size = 1024; // TODO this should depend on baudrate
size_t count = len / chunk_size;
size_t i = 0;
uint32_t long_write_value = ((uint32_t) write_value) << 24 |
write_value << 16 |
write_value << 8 |
write_value;
for (size_t j = 0; j < count; ++j) {
for (size_t k = 0; k < chunk_size; ++k) {
data[i] = spi_transaction(HSPI, 0, 0, 0, 0, 0, 0, 8, long_write_value);
++i;
}
ets_loop_iter();
}
while (i < len) {
data[i] = spi_transaction(HSPI, 0, 0, 0, 0, 0, 0, 8, long_write_value);
++i;
}
return true;
}