/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Scott Shawcroft * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "esp8266/ets_alt_task.h" #include "esp8266/hspi.h" #include "shared-bindings/microcontroller/__init__.h" #include "common-hal/busio/SPI.h" #include "py/nlr.h" #include "eagle_soc.h" #include "c_types.h" #include "gpio.h" extern const mcu_pin_obj_t pin_MTMS; extern const mcu_pin_obj_t pin_MTCK; extern const mcu_pin_obj_t pin_MTDI; void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi, const mcu_pin_obj_t * miso) { if (clock != &pin_MTMS || !((mosi == &pin_MTCK && miso == MP_OBJ_TO_PTR(mp_const_none)) || (mosi == MP_OBJ_TO_PTR(mp_const_none) && miso == &pin_MTDI))) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "Pins not valid for SPI")); } uint32_t clock_div_flag = 0; if (SPI_CLK_USE_DIV) { clock_div_flag = 0x0001; } // Set bit 9 if 80MHz sysclock required WRITE_PERI_REG(PERIPHS_IO_MUX, 0x105 | (clock_div_flag<<9)); // GPIO12 is HSPI MISO pin (Master Data In) if (miso == &pin_MTDI) { PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, 2); } // GPIO13 is HSPI MOSI pin (Master Data Out) if (mosi == &pin_MTCK) { PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, 2); } // GPIO14 is HSPI CLK pin (Clock) PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, 2); spi_clock(HSPI, SPI_CLK_PREDIV, SPI_CLK_CNTDIV); spi_tx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW); spi_rx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW); SET_PERI_REG_MASK(SPI_USER(HSPI), SPI_CS_SETUP|SPI_CS_HOLD); CLEAR_PERI_REG_MASK(SPI_USER(HSPI), SPI_FLASH_MODE); } void common_hal_busio_spi_deinit(busio_spi_obj_t *self) { PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, 0); PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTDI_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, 0); PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTCK_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, 0); PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTMS_U); // Turn off outputs 12 - 14. gpio_output_set(0x0, 0x0, 0x0, 0x7 << 12); } bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) { if (bits != 8) { return false; } if (baudrate == 80000000L) { // Special case for full speed. spi_init_gpio(HSPI, SPI_CLK_80MHZ_NODIV); spi_clock(HSPI, 0, 0); } else if (baudrate > 40000000L) { return false; } else { uint32_t divider = 40000000L / baudrate; uint16_t prediv = MIN(divider, SPI_CLKDIV_PRE + 1); uint16_t cntdiv = (divider / prediv) * 2; // cntdiv has to be even if (cntdiv > SPI_CLKCNT_N + 1 || cntdiv == 0 || prediv == 0) { return false; } spi_init_gpio(HSPI, SPI_CLK_USE_DIV); spi_clock(HSPI, prediv, cntdiv); } spi_mode(HSPI, phase, polarity); return true; } bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) { bool success = false; common_hal_mcu_disable_interrupts(); if (!self->locked) { self->locked = true; success = true; } common_hal_mcu_enable_interrupts(); return success; } bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) { return self->locked; } void common_hal_busio_spi_unlock(busio_spi_obj_t *self) { self->locked = false; } bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t * data, size_t len) { size_t chunk_size = 1024; size_t count = len / chunk_size; size_t i = 0; for (size_t j = 0; j < count; ++j) { for (size_t k = 0; k < chunk_size; ++k) { spi_tx8fast(HSPI, data[i]); ++i; } ets_loop_iter(); } while (i < len) { spi_tx8fast(HSPI, data[i]); ++i; } while (spi_busy(HSPI)) {}; // Wait for SPI to finish the last byte. return true; } bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t * data, size_t len, uint8_t write_value) { // Process data in chunks, let the pending tasks run in between size_t chunk_size = 1024; // TODO this should depend on baudrate size_t count = len / chunk_size; size_t i = 0; uint32_t long_write_value = ((uint32_t) write_value) << 24 | write_value << 16 | write_value << 8 | write_value; for (size_t j = 0; j < count; ++j) { for (size_t k = 0; k < chunk_size; ++k) { data[i] = spi_transaction(HSPI, 0, 0, 0, 0, 0, 0, 8, long_write_value); ++i; } ets_loop_iter(); } while (i < len) { data[i] = spi_transaction(HSPI, 0, 0, 0, 0, 0, 0, 8, long_write_value); ++i; } return true; }