2023-08-13 19:43:54 -04:00

544 lines
20 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/wifi/Radio.h"
#include "shared-bindings/wifi/Network.h"
#include <string.h>
#include "bindings/espidf/__init__.h"
#include "common-hal/wifi/__init__.h"
#include "shared/runtime/interrupt_char.h"
#include "py/gc.h"
#include "py/runtime.h"
#include "shared-bindings/ipaddress/IPv4Address.h"
#include "shared-bindings/wifi/ScannedNetworks.h"
#include "shared-bindings/wifi/AuthMode.h"
#include "shared-bindings/time/__init__.h"
#include "shared-module/ipaddress/__init__.h"
#include "components/esp_wifi/include/esp_wifi.h"
#include "components/lwip/include/apps/ping/ping_sock.h"
#if CIRCUITPY_MDNS
#include "components/mdns/include/mdns.h"
#endif
#define MAC_ADDRESS_LENGTH 6
static void set_mode_station(wifi_radio_obj_t *self, bool state) {
wifi_mode_t next_mode;
if (state) {
if (self->ap_mode) {
next_mode = WIFI_MODE_APSTA;
} else {
next_mode = WIFI_MODE_STA;
}
} else {
if (self->ap_mode) {
next_mode = WIFI_MODE_AP;
} else {
next_mode = WIFI_MODE_NULL;
}
}
esp_wifi_set_mode(next_mode);
self->sta_mode = state;
}
static void set_mode_ap(wifi_radio_obj_t *self, bool state) {
wifi_mode_t next_mode;
if (state) {
if (self->sta_mode) {
next_mode = WIFI_MODE_APSTA;
} else {
next_mode = WIFI_MODE_AP;
}
} else {
if (self->sta_mode) {
next_mode = WIFI_MODE_STA;
} else {
next_mode = WIFI_MODE_NULL;
}
}
esp_wifi_set_mode(next_mode);
self->ap_mode = state;
}
bool common_hal_wifi_radio_get_enabled(wifi_radio_obj_t *self) {
return self->started;
}
void common_hal_wifi_radio_set_enabled(wifi_radio_obj_t *self, bool enabled) {
if (self->started && !enabled) {
if (self->current_scan != NULL) {
common_hal_wifi_radio_stop_scanning_networks(self);
}
#if CIRCUITPY_MDNS
mdns_free();
#endif
ESP_ERROR_CHECK(esp_wifi_stop());
self->started = false;
return;
}
if (!self->started && enabled) {
ESP_ERROR_CHECK(esp_wifi_start());
self->started = true;
return;
}
}
mp_obj_t common_hal_wifi_radio_get_hostname(wifi_radio_obj_t *self) {
const char *hostname = NULL;
esp_netif_get_hostname(self->netif, &hostname);
if (hostname == NULL) {
return mp_const_none;
}
return mp_obj_new_str(hostname, strlen(hostname));
}
void common_hal_wifi_radio_set_hostname(wifi_radio_obj_t *self, const char *hostname) {
esp_netif_set_hostname(self->netif, hostname);
esp_netif_set_hostname(self->ap_netif, hostname);
}
mp_obj_t common_hal_wifi_radio_get_mac_address(wifi_radio_obj_t *self) {
uint8_t mac[MAC_ADDRESS_LENGTH];
esp_wifi_get_mac(ESP_IF_WIFI_STA, mac);
return mp_obj_new_bytes(mac, MAC_ADDRESS_LENGTH);
}
void common_hal_wifi_radio_set_mac_address(wifi_radio_obj_t *self, const uint8_t *mac) {
if (!self->sta_mode) {
mp_raise_RuntimeError(translate("Interface must be started"));
}
if ((mac[0] & 0b1) == 0b1) {
mp_raise_RuntimeError(translate("Invalid multicast MAC address"));
}
esp_wifi_set_mac(ESP_IF_WIFI_STA, mac);
}
mp_float_t common_hal_wifi_radio_get_tx_power(wifi_radio_obj_t *self) {
int8_t tx_power;
esp_wifi_get_max_tx_power(&tx_power);
return tx_power / 4.0f;
}
void common_hal_wifi_radio_set_tx_power(wifi_radio_obj_t *self, const mp_float_t tx_power) {
esp_wifi_set_max_tx_power(tx_power * 4.0f);
}
mp_obj_t common_hal_wifi_radio_get_mac_address_ap(wifi_radio_obj_t *self) {
uint8_t mac[MAC_ADDRESS_LENGTH];
esp_wifi_get_mac(ESP_IF_WIFI_AP, mac);
return mp_obj_new_bytes(mac, MAC_ADDRESS_LENGTH);
}
void common_hal_wifi_radio_set_mac_address_ap(wifi_radio_obj_t *self, const uint8_t *mac) {
if (!self->ap_mode) {
mp_raise_RuntimeError(translate("Interface must be started"));
}
if ((mac[0] & 0b1) == 0b1) {
mp_raise_RuntimeError(translate("Invalid multicast MAC address"));
}
esp_wifi_set_mac(ESP_IF_WIFI_AP, mac);
}
mp_obj_t common_hal_wifi_radio_start_scanning_networks(wifi_radio_obj_t *self, uint8_t start_channel, uint8_t stop_channel) {
if (self->current_scan != NULL) {
mp_raise_RuntimeError(translate("Already scanning for wifi networks"));
}
if (!common_hal_wifi_radio_get_enabled(self)) {
mp_raise_RuntimeError(translate("wifi is not enabled"));
}
set_mode_station(self, true);
wifi_scannednetworks_obj_t *scan = mp_obj_malloc(wifi_scannednetworks_obj_t, &wifi_scannednetworks_type);
self->current_scan = scan;
scan->current_channel_index = 0;
scan->start_channel = start_channel;
scan->end_channel = stop_channel;
scan->radio_event_group = self->event_group_handle;
scan->done = false;
scan->channel_scan_in_progress = false;
wifi_scannednetworks_scan_next_channel(scan);
return scan;
}
void common_hal_wifi_radio_stop_scanning_networks(wifi_radio_obj_t *self) {
// Return early if self->current_scan is NULL to avoid hang
if (self->current_scan == NULL) {
return;
}
// Free the memory used to store the found aps.
wifi_scannednetworks_deinit(self->current_scan);
self->current_scan = NULL;
}
void common_hal_wifi_radio_start_station(wifi_radio_obj_t *self) {
set_mode_station(self, true);
}
void common_hal_wifi_radio_stop_station(wifi_radio_obj_t *self) {
set_mode_station(self, false);
}
void common_hal_wifi_radio_start_ap(wifi_radio_obj_t *self, uint8_t *ssid, size_t ssid_len, uint8_t *password, size_t password_len, uint8_t channel, uint32_t authmode, uint8_t max_connections) {
set_mode_ap(self, true);
uint8_t esp_authmode = 0;
switch (authmode) {
case AUTHMODE_OPEN:
esp_authmode = WIFI_AUTH_OPEN;
break;
case AUTHMODE_WPA | AUTHMODE_PSK:
esp_authmode = WIFI_AUTH_WPA_PSK;
break;
case AUTHMODE_WPA2 | AUTHMODE_PSK:
esp_authmode = WIFI_AUTH_WPA2_PSK;
break;
case AUTHMODE_WPA | AUTHMODE_WPA2 | AUTHMODE_PSK:
esp_authmode = WIFI_AUTH_WPA_WPA2_PSK;
break;
default:
mp_arg_error_invalid(MP_QSTR_authmode);
break;
}
wifi_config_t *config = &self->ap_config;
memcpy(&config->ap.ssid, ssid, ssid_len);
config->ap.ssid[ssid_len] = 0;
memcpy(&config->ap.password, password, password_len);
config->ap.password[password_len] = 0;
config->ap.channel = channel;
config->ap.authmode = esp_authmode;
mp_arg_validate_int_range(max_connections, 0, 10, MP_QSTR_max_connections);
config->ap.max_connection = max_connections;
esp_wifi_set_config(WIFI_IF_AP, config);
}
bool common_hal_wifi_radio_get_ap_active(wifi_radio_obj_t *self) {
return self->ap_mode && esp_netif_is_netif_up(self->ap_netif);
}
void common_hal_wifi_radio_stop_ap(wifi_radio_obj_t *self) {
set_mode_ap(self, false);
}
wifi_radio_error_t common_hal_wifi_radio_connect(wifi_radio_obj_t *self, uint8_t *ssid, size_t ssid_len, uint8_t *password, size_t password_len, uint8_t channel, mp_float_t timeout, uint8_t *bssid, size_t bssid_len) {
if (!common_hal_wifi_radio_get_enabled(self)) {
mp_raise_RuntimeError(translate("wifi is not enabled"));
}
wifi_config_t *config = &self->sta_config;
size_t timeout_ms = timeout * 1000;
uint32_t start_time = common_hal_time_monotonic_ms();
uint32_t end_time = start_time + timeout_ms;
EventBits_t bits;
// can't block since both bits are false after wifi_init
// both bits are true after an existing connection stops
bits = xEventGroupWaitBits(self->event_group_handle,
WIFI_CONNECTED_BIT | WIFI_DISCONNECTED_BIT,
pdTRUE,
pdTRUE,
0);
bool connected = ((bits & WIFI_CONNECTED_BIT) != 0) &&
!((bits & WIFI_DISCONNECTED_BIT) != 0);
if (connected) {
// SSIDs are up to 32 bytes. Assume it is null terminated if it is less.
if (memcmp(ssid, config->sta.ssid, ssid_len) == 0 &&
(ssid_len == 32 || strlen((const char *)config->sta.ssid) == ssid_len)) {
// Already connected to the desired network.
return WIFI_RADIO_ERROR_NONE;
} else {
xEventGroupClearBits(self->event_group_handle, WIFI_DISCONNECTED_BIT);
// Trying to switch networks so disconnect first.
esp_wifi_disconnect();
do {
RUN_BACKGROUND_TASKS;
bits = xEventGroupWaitBits(self->event_group_handle,
WIFI_DISCONNECTED_BIT,
pdTRUE,
pdTRUE,
0);
} while ((bits & WIFI_DISCONNECTED_BIT) == 0 && !mp_hal_is_interrupted());
}
}
// explicitly clear bits since xEventGroupWaitBits may have timed out
xEventGroupClearBits(self->event_group_handle, WIFI_CONNECTED_BIT);
xEventGroupClearBits(self->event_group_handle, WIFI_DISCONNECTED_BIT);
set_mode_station(self, true);
memcpy(&config->sta.ssid, ssid, ssid_len);
if (ssid_len < 32) {
config->sta.ssid[ssid_len] = 0;
}
memcpy(&config->sta.password, password, password_len);
config->sta.password[password_len] = 0;
config->sta.channel = channel;
// From esp_wifi_types.h:
// Generally, station_config.bssid_set needs to be 0; and it needs
// to be 1 only when users need to check the MAC address of the AP
if (bssid_len > 0) {
memcpy(&config->sta.bssid, bssid, bssid_len);
config->sta.bssid[bssid_len] = 0;
config->sta.bssid_set = true;
} else {
config->sta.bssid_set = false;
}
// If channel is 0 (default/unset) and BSSID is not given, do a full scan instead of fast scan
// This will ensure that the best AP in range is chosen automatically
if ((config->sta.bssid_set == 0) && (config->sta.channel == 0)) {
config->sta.scan_method = WIFI_ALL_CHANNEL_SCAN;
} else {
config->sta.scan_method = WIFI_FAST_SCAN;
}
esp_wifi_set_config(ESP_IF_WIFI_STA, config);
self->starting_retries = 5;
self->retries_left = 5;
esp_wifi_connect();
do {
RUN_BACKGROUND_TASKS;
bits = xEventGroupWaitBits(self->event_group_handle,
WIFI_CONNECTED_BIT | WIFI_DISCONNECTED_BIT,
pdTRUE,
pdTRUE,
0);
// Don't retry anymore if we're over our time budget.
if (self->retries_left > 0 && common_hal_time_monotonic_ms() > end_time) {
self->retries_left = 0;
}
} while ((bits & (WIFI_CONNECTED_BIT | WIFI_DISCONNECTED_BIT)) == 0 && !mp_hal_is_interrupted());
if ((bits & WIFI_DISCONNECTED_BIT) != 0) {
if (self->last_disconnect_reason == WIFI_REASON_AUTH_FAIL) {
return WIFI_RADIO_ERROR_AUTH_FAIL;
} else if (self->last_disconnect_reason == WIFI_REASON_NO_AP_FOUND) {
return WIFI_RADIO_ERROR_NO_AP_FOUND;
}
return self->last_disconnect_reason;
} else {
// We're connected, allow us to retry if we get disconnected.
self->retries_left = self->starting_retries;
}
return WIFI_RADIO_ERROR_NONE;
}
bool common_hal_wifi_radio_get_connected(wifi_radio_obj_t *self) {
return self->sta_mode && esp_netif_is_netif_up(self->netif);
}
mp_obj_t common_hal_wifi_radio_get_ap_info(wifi_radio_obj_t *self) {
if (!esp_netif_is_netif_up(self->netif)) {
return mp_const_none;
}
// Make sure the interface is in STA mode
if (!self->sta_mode) {
return mp_const_none;
}
wifi_network_obj_t *ap_info = mp_obj_malloc(wifi_network_obj_t, &wifi_network_type);
// From esp_wifi.h, the possible return values (typos theirs):
// ESP_OK: succeed
// ESP_ERR_WIFI_CONN: The station interface don't initialized
// ESP_ERR_WIFI_NOT_CONNECT: The station is in disconnect status
if (esp_wifi_sta_get_ap_info(&self->ap_info.record) != ESP_OK) {
return mp_const_none;
} else {
if (strlen(self->ap_info.record.country.cc) == 0) {
// Workaround to fill country related information in ap_info until ESP-IDF carries a fix
// esp_wifi_sta_get_ap_info does not appear to fill wifi_country_t (e.g. country.cc) details
// (IDFGH-4437) #6267
// Note: It is possible that Wi-Fi APs don't have a CC set, then even after this workaround
// the element would remain empty.
memset(&self->ap_info.record.country, 0, sizeof(wifi_country_t));
if (esp_wifi_get_country(&self->ap_info.record.country) != ESP_OK) {
return mp_const_none;
}
}
memcpy(&ap_info->record, &self->ap_info.record, sizeof(wifi_ap_record_t));
return MP_OBJ_FROM_PTR(ap_info);
}
}
mp_obj_t common_hal_wifi_radio_get_ipv4_gateway(wifi_radio_obj_t *self) {
if (!esp_netif_is_netif_up(self->netif)) {
return mp_const_none;
}
esp_netif_get_ip_info(self->netif, &self->ip_info);
return common_hal_ipaddress_new_ipv4address(self->ip_info.gw.addr);
}
mp_obj_t common_hal_wifi_radio_get_ipv4_gateway_ap(wifi_radio_obj_t *self) {
if (!esp_netif_is_netif_up(self->ap_netif)) {
return mp_const_none;
}
esp_netif_get_ip_info(self->ap_netif, &self->ap_ip_info);
return common_hal_ipaddress_new_ipv4address(self->ap_ip_info.gw.addr);
}
mp_obj_t common_hal_wifi_radio_get_ipv4_subnet(wifi_radio_obj_t *self) {
if (!esp_netif_is_netif_up(self->netif)) {
return mp_const_none;
}
esp_netif_get_ip_info(self->netif, &self->ip_info);
return common_hal_ipaddress_new_ipv4address(self->ip_info.netmask.addr);
}
mp_obj_t common_hal_wifi_radio_get_ipv4_subnet_ap(wifi_radio_obj_t *self) {
if (!esp_netif_is_netif_up(self->ap_netif)) {
return mp_const_none;
}
esp_netif_get_ip_info(self->ap_netif, &self->ap_ip_info);
return common_hal_ipaddress_new_ipv4address(self->ap_ip_info.netmask.addr);
}
uint32_t wifi_radio_get_ipv4_address(wifi_radio_obj_t *self) {
if (!esp_netif_is_netif_up(self->netif)) {
return 0;
}
esp_netif_get_ip_info(self->netif, &self->ip_info);
return self->ip_info.ip.addr;
}
mp_obj_t common_hal_wifi_radio_get_ipv4_address(wifi_radio_obj_t *self) {
if (!esp_netif_is_netif_up(self->netif)) {
return mp_const_none;
}
esp_netif_get_ip_info(self->netif, &self->ip_info);
return common_hal_ipaddress_new_ipv4address(self->ip_info.ip.addr);
}
mp_obj_t common_hal_wifi_radio_get_ipv4_address_ap(wifi_radio_obj_t *self) {
if (!esp_netif_is_netif_up(self->ap_netif)) {
return mp_const_none;
}
esp_netif_get_ip_info(self->ap_netif, &self->ap_ip_info);
return common_hal_ipaddress_new_ipv4address(self->ap_ip_info.ip.addr);
}
mp_obj_t common_hal_wifi_radio_get_ipv4_dns(wifi_radio_obj_t *self) {
if (!esp_netif_is_netif_up(self->netif)) {
return mp_const_none;
}
esp_netif_get_dns_info(self->netif, ESP_NETIF_DNS_MAIN, &self->dns_info);
// dns_info is of type esp_netif_dns_info_t, which is just ever so slightly
// different than esp_netif_ip_info_t used for
// common_hal_wifi_radio_get_ipv4_address (includes both ipv4 and 6),
// so some extra jumping is required to get to the actual address
return common_hal_ipaddress_new_ipv4address(self->dns_info.ip.u_addr.ip4.addr);
}
void common_hal_wifi_radio_set_ipv4_dns(wifi_radio_obj_t *self, mp_obj_t ipv4_dns_addr) {
esp_netif_dns_info_t dns_addr;
ipaddress_ipaddress_to_esp_idf_ip4(ipv4_dns_addr, &dns_addr.ip.u_addr.ip4);
esp_netif_set_dns_info(self->netif, ESP_NETIF_DNS_MAIN, &dns_addr);
}
void common_hal_wifi_radio_start_dhcp_client(wifi_radio_obj_t *self) {
esp_netif_dhcpc_start(self->netif);
}
void common_hal_wifi_radio_stop_dhcp_client(wifi_radio_obj_t *self) {
esp_netif_dhcpc_stop(self->netif);
}
void common_hal_wifi_radio_start_dhcp_server(wifi_radio_obj_t *self) {
esp_netif_dhcps_start(self->ap_netif);
}
void common_hal_wifi_radio_stop_dhcp_server(wifi_radio_obj_t *self) {
esp_netif_dhcps_stop(self->ap_netif);
}
void common_hal_wifi_radio_set_ipv4_address(wifi_radio_obj_t *self, mp_obj_t ipv4, mp_obj_t netmask, mp_obj_t gateway, mp_obj_t ipv4_dns) {
common_hal_wifi_radio_stop_dhcp_client(self); // Must stop station DHCP to set a manual address
esp_netif_ip_info_t ip_info;
ipaddress_ipaddress_to_esp_idf_ip4(ipv4, &ip_info.ip);
ipaddress_ipaddress_to_esp_idf_ip4(netmask, &ip_info.netmask);
ipaddress_ipaddress_to_esp_idf_ip4(gateway, &ip_info.gw);
esp_netif_set_ip_info(self->netif, &ip_info);
if (ipv4_dns != MP_OBJ_NULL) {
common_hal_wifi_radio_set_ipv4_dns(self, ipv4_dns);
}
}
void common_hal_wifi_radio_set_ipv4_address_ap(wifi_radio_obj_t *self, mp_obj_t ipv4, mp_obj_t netmask, mp_obj_t gateway) {
common_hal_wifi_radio_stop_dhcp_server(self); // Must stop access point DHCP to set a manual address
esp_netif_ip_info_t ip_info;
ipaddress_ipaddress_to_esp_idf_ip4(ipv4, &ip_info.ip);
ipaddress_ipaddress_to_esp_idf_ip4(netmask, &ip_info.netmask);
ipaddress_ipaddress_to_esp_idf_ip4(gateway, &ip_info.gw);
esp_netif_set_ip_info(self->ap_netif, &ip_info);
common_hal_wifi_radio_start_dhcp_server(self); // restart access point DHCP
}
mp_int_t common_hal_wifi_radio_ping(wifi_radio_obj_t *self, mp_obj_t ip_address, mp_float_t timeout) {
esp_ping_config_t ping_config = ESP_PING_DEFAULT_CONFIG();
ipaddress_ipaddress_to_esp_idf(ip_address, &ping_config.target_addr);
ping_config.count = 1;
size_t timeout_ms = timeout * 1000;
esp_ping_handle_t ping;
CHECK_ESP_RESULT(esp_ping_new_session(&ping_config, NULL, &ping));
esp_ping_start(ping);
uint32_t received = 0;
uint32_t total_time_ms = 0;
uint32_t start_time = common_hal_time_monotonic_ms();
while (received == 0 && (common_hal_time_monotonic_ms() - start_time < timeout_ms) && !mp_hal_is_interrupted()) {
RUN_BACKGROUND_TASKS;
esp_ping_get_profile(ping, ESP_PING_PROF_DURATION, &total_time_ms, sizeof(total_time_ms));
esp_ping_get_profile(ping, ESP_PING_PROF_REPLY, &received, sizeof(received));
}
uint32_t elapsed_time = 0xffffffff;
if (received > 0) {
esp_ping_get_profile(ping, ESP_PING_PROF_TIMEGAP, &elapsed_time, sizeof(elapsed_time));
}
esp_ping_delete_session(ping);
return elapsed_time;
}
void common_hal_wifi_radio_gc_collect(wifi_radio_obj_t *self) {
// Only bother to scan the actual object references.
gc_collect_ptr(self->current_scan);
}