/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/wifi/Radio.h" #include "shared-bindings/wifi/Network.h" #include #include "bindings/espidf/__init__.h" #include "common-hal/wifi/__init__.h" #include "shared/runtime/interrupt_char.h" #include "py/gc.h" #include "py/runtime.h" #include "shared-bindings/ipaddress/IPv4Address.h" #include "shared-bindings/wifi/ScannedNetworks.h" #include "shared-bindings/wifi/AuthMode.h" #include "shared-bindings/time/__init__.h" #include "shared-module/ipaddress/__init__.h" #include "components/esp_wifi/include/esp_wifi.h" #include "components/lwip/include/apps/ping/ping_sock.h" #if CIRCUITPY_MDNS #include "components/mdns/include/mdns.h" #endif #define MAC_ADDRESS_LENGTH 6 static void set_mode_station(wifi_radio_obj_t *self, bool state) { wifi_mode_t next_mode; if (state) { if (self->ap_mode) { next_mode = WIFI_MODE_APSTA; } else { next_mode = WIFI_MODE_STA; } } else { if (self->ap_mode) { next_mode = WIFI_MODE_AP; } else { next_mode = WIFI_MODE_NULL; } } esp_wifi_set_mode(next_mode); self->sta_mode = state; } static void set_mode_ap(wifi_radio_obj_t *self, bool state) { wifi_mode_t next_mode; if (state) { if (self->sta_mode) { next_mode = WIFI_MODE_APSTA; } else { next_mode = WIFI_MODE_AP; } } else { if (self->sta_mode) { next_mode = WIFI_MODE_STA; } else { next_mode = WIFI_MODE_NULL; } } esp_wifi_set_mode(next_mode); self->ap_mode = state; } bool common_hal_wifi_radio_get_enabled(wifi_radio_obj_t *self) { return self->started; } void common_hal_wifi_radio_set_enabled(wifi_radio_obj_t *self, bool enabled) { if (self->started && !enabled) { if (self->current_scan != NULL) { common_hal_wifi_radio_stop_scanning_networks(self); } #if CIRCUITPY_MDNS mdns_free(); #endif ESP_ERROR_CHECK(esp_wifi_stop()); self->started = false; return; } if (!self->started && enabled) { ESP_ERROR_CHECK(esp_wifi_start()); self->started = true; return; } } mp_obj_t common_hal_wifi_radio_get_hostname(wifi_radio_obj_t *self) { const char *hostname = NULL; esp_netif_get_hostname(self->netif, &hostname); if (hostname == NULL) { return mp_const_none; } return mp_obj_new_str(hostname, strlen(hostname)); } void common_hal_wifi_radio_set_hostname(wifi_radio_obj_t *self, const char *hostname) { esp_netif_set_hostname(self->netif, hostname); esp_netif_set_hostname(self->ap_netif, hostname); } mp_obj_t common_hal_wifi_radio_get_mac_address(wifi_radio_obj_t *self) { uint8_t mac[MAC_ADDRESS_LENGTH]; esp_wifi_get_mac(ESP_IF_WIFI_STA, mac); return mp_obj_new_bytes(mac, MAC_ADDRESS_LENGTH); } void common_hal_wifi_radio_set_mac_address(wifi_radio_obj_t *self, const uint8_t *mac) { if (!self->sta_mode) { mp_raise_RuntimeError(translate("Interface must be started")); } if ((mac[0] & 0b1) == 0b1) { mp_raise_RuntimeError(translate("Invalid multicast MAC address")); } esp_wifi_set_mac(ESP_IF_WIFI_STA, mac); } mp_float_t common_hal_wifi_radio_get_tx_power(wifi_radio_obj_t *self) { int8_t tx_power; esp_wifi_get_max_tx_power(&tx_power); return tx_power / 4.0f; } void common_hal_wifi_radio_set_tx_power(wifi_radio_obj_t *self, const mp_float_t tx_power) { esp_wifi_set_max_tx_power(tx_power * 4.0f); } mp_obj_t common_hal_wifi_radio_get_mac_address_ap(wifi_radio_obj_t *self) { uint8_t mac[MAC_ADDRESS_LENGTH]; esp_wifi_get_mac(ESP_IF_WIFI_AP, mac); return mp_obj_new_bytes(mac, MAC_ADDRESS_LENGTH); } void common_hal_wifi_radio_set_mac_address_ap(wifi_radio_obj_t *self, const uint8_t *mac) { if (!self->ap_mode) { mp_raise_RuntimeError(translate("Interface must be started")); } if ((mac[0] & 0b1) == 0b1) { mp_raise_RuntimeError(translate("Invalid multicast MAC address")); } esp_wifi_set_mac(ESP_IF_WIFI_AP, mac); } mp_obj_t common_hal_wifi_radio_start_scanning_networks(wifi_radio_obj_t *self, uint8_t start_channel, uint8_t stop_channel) { if (self->current_scan != NULL) { mp_raise_RuntimeError(translate("Already scanning for wifi networks")); } if (!common_hal_wifi_radio_get_enabled(self)) { mp_raise_RuntimeError(translate("wifi is not enabled")); } set_mode_station(self, true); wifi_scannednetworks_obj_t *scan = mp_obj_malloc(wifi_scannednetworks_obj_t, &wifi_scannednetworks_type); self->current_scan = scan; scan->current_channel_index = 0; scan->start_channel = start_channel; scan->end_channel = stop_channel; scan->radio_event_group = self->event_group_handle; scan->done = false; scan->channel_scan_in_progress = false; wifi_scannednetworks_scan_next_channel(scan); return scan; } void common_hal_wifi_radio_stop_scanning_networks(wifi_radio_obj_t *self) { // Return early if self->current_scan is NULL to avoid hang if (self->current_scan == NULL) { return; } // Free the memory used to store the found aps. wifi_scannednetworks_deinit(self->current_scan); self->current_scan = NULL; } void common_hal_wifi_radio_start_station(wifi_radio_obj_t *self) { set_mode_station(self, true); } void common_hal_wifi_radio_stop_station(wifi_radio_obj_t *self) { set_mode_station(self, false); } void common_hal_wifi_radio_start_ap(wifi_radio_obj_t *self, uint8_t *ssid, size_t ssid_len, uint8_t *password, size_t password_len, uint8_t channel, uint32_t authmode, uint8_t max_connections) { set_mode_ap(self, true); uint8_t esp_authmode = 0; switch (authmode) { case AUTHMODE_OPEN: esp_authmode = WIFI_AUTH_OPEN; break; case AUTHMODE_WPA | AUTHMODE_PSK: esp_authmode = WIFI_AUTH_WPA_PSK; break; case AUTHMODE_WPA2 | AUTHMODE_PSK: esp_authmode = WIFI_AUTH_WPA2_PSK; break; case AUTHMODE_WPA | AUTHMODE_WPA2 | AUTHMODE_PSK: esp_authmode = WIFI_AUTH_WPA_WPA2_PSK; break; default: mp_arg_error_invalid(MP_QSTR_authmode); break; } wifi_config_t *config = &self->ap_config; memcpy(&config->ap.ssid, ssid, ssid_len); config->ap.ssid[ssid_len] = 0; memcpy(&config->ap.password, password, password_len); config->ap.password[password_len] = 0; config->ap.channel = channel; config->ap.authmode = esp_authmode; mp_arg_validate_int_range(max_connections, 0, 10, MP_QSTR_max_connections); config->ap.max_connection = max_connections; esp_wifi_set_config(WIFI_IF_AP, config); } bool common_hal_wifi_radio_get_ap_active(wifi_radio_obj_t *self) { return self->ap_mode && esp_netif_is_netif_up(self->ap_netif); } void common_hal_wifi_radio_stop_ap(wifi_radio_obj_t *self) { set_mode_ap(self, false); } wifi_radio_error_t common_hal_wifi_radio_connect(wifi_radio_obj_t *self, uint8_t *ssid, size_t ssid_len, uint8_t *password, size_t password_len, uint8_t channel, mp_float_t timeout, uint8_t *bssid, size_t bssid_len) { if (!common_hal_wifi_radio_get_enabled(self)) { mp_raise_RuntimeError(translate("wifi is not enabled")); } wifi_config_t *config = &self->sta_config; size_t timeout_ms = timeout * 1000; uint32_t start_time = common_hal_time_monotonic_ms(); uint32_t end_time = start_time + timeout_ms; EventBits_t bits; // can't block since both bits are false after wifi_init // both bits are true after an existing connection stops bits = xEventGroupWaitBits(self->event_group_handle, WIFI_CONNECTED_BIT | WIFI_DISCONNECTED_BIT, pdTRUE, pdTRUE, 0); bool connected = ((bits & WIFI_CONNECTED_BIT) != 0) && !((bits & WIFI_DISCONNECTED_BIT) != 0); if (connected) { // SSIDs are up to 32 bytes. Assume it is null terminated if it is less. if (memcmp(ssid, config->sta.ssid, ssid_len) == 0 && (ssid_len == 32 || strlen((const char *)config->sta.ssid) == ssid_len)) { // Already connected to the desired network. return WIFI_RADIO_ERROR_NONE; } else { xEventGroupClearBits(self->event_group_handle, WIFI_DISCONNECTED_BIT); // Trying to switch networks so disconnect first. esp_wifi_disconnect(); do { RUN_BACKGROUND_TASKS; bits = xEventGroupWaitBits(self->event_group_handle, WIFI_DISCONNECTED_BIT, pdTRUE, pdTRUE, 0); } while ((bits & WIFI_DISCONNECTED_BIT) == 0 && !mp_hal_is_interrupted()); } } // explicitly clear bits since xEventGroupWaitBits may have timed out xEventGroupClearBits(self->event_group_handle, WIFI_CONNECTED_BIT); xEventGroupClearBits(self->event_group_handle, WIFI_DISCONNECTED_BIT); set_mode_station(self, true); memcpy(&config->sta.ssid, ssid, ssid_len); if (ssid_len < 32) { config->sta.ssid[ssid_len] = 0; } memcpy(&config->sta.password, password, password_len); config->sta.password[password_len] = 0; config->sta.channel = channel; // From esp_wifi_types.h: // Generally, station_config.bssid_set needs to be 0; and it needs // to be 1 only when users need to check the MAC address of the AP if (bssid_len > 0) { memcpy(&config->sta.bssid, bssid, bssid_len); config->sta.bssid[bssid_len] = 0; config->sta.bssid_set = true; } else { config->sta.bssid_set = false; } // If channel is 0 (default/unset) and BSSID is not given, do a full scan instead of fast scan // This will ensure that the best AP in range is chosen automatically if ((config->sta.bssid_set == 0) && (config->sta.channel == 0)) { config->sta.scan_method = WIFI_ALL_CHANNEL_SCAN; } else { config->sta.scan_method = WIFI_FAST_SCAN; } esp_wifi_set_config(ESP_IF_WIFI_STA, config); self->starting_retries = 5; self->retries_left = 5; esp_wifi_connect(); do { RUN_BACKGROUND_TASKS; bits = xEventGroupWaitBits(self->event_group_handle, WIFI_CONNECTED_BIT | WIFI_DISCONNECTED_BIT, pdTRUE, pdTRUE, 0); // Don't retry anymore if we're over our time budget. if (self->retries_left > 0 && common_hal_time_monotonic_ms() > end_time) { self->retries_left = 0; } } while ((bits & (WIFI_CONNECTED_BIT | WIFI_DISCONNECTED_BIT)) == 0 && !mp_hal_is_interrupted()); if ((bits & WIFI_DISCONNECTED_BIT) != 0) { if (self->last_disconnect_reason == WIFI_REASON_AUTH_FAIL) { return WIFI_RADIO_ERROR_AUTH_FAIL; } else if (self->last_disconnect_reason == WIFI_REASON_NO_AP_FOUND) { return WIFI_RADIO_ERROR_NO_AP_FOUND; } return self->last_disconnect_reason; } else { // We're connected, allow us to retry if we get disconnected. self->retries_left = self->starting_retries; } return WIFI_RADIO_ERROR_NONE; } bool common_hal_wifi_radio_get_connected(wifi_radio_obj_t *self) { return self->sta_mode && esp_netif_is_netif_up(self->netif); } mp_obj_t common_hal_wifi_radio_get_ap_info(wifi_radio_obj_t *self) { if (!esp_netif_is_netif_up(self->netif)) { return mp_const_none; } // Make sure the interface is in STA mode if (!self->sta_mode) { return mp_const_none; } wifi_network_obj_t *ap_info = mp_obj_malloc(wifi_network_obj_t, &wifi_network_type); // From esp_wifi.h, the possible return values (typos theirs): // ESP_OK: succeed // ESP_ERR_WIFI_CONN: The station interface don't initialized // ESP_ERR_WIFI_NOT_CONNECT: The station is in disconnect status if (esp_wifi_sta_get_ap_info(&self->ap_info.record) != ESP_OK) { return mp_const_none; } else { if (strlen(self->ap_info.record.country.cc) == 0) { // Workaround to fill country related information in ap_info until ESP-IDF carries a fix // esp_wifi_sta_get_ap_info does not appear to fill wifi_country_t (e.g. country.cc) details // (IDFGH-4437) #6267 // Note: It is possible that Wi-Fi APs don't have a CC set, then even after this workaround // the element would remain empty. memset(&self->ap_info.record.country, 0, sizeof(wifi_country_t)); if (esp_wifi_get_country(&self->ap_info.record.country) != ESP_OK) { return mp_const_none; } } memcpy(&ap_info->record, &self->ap_info.record, sizeof(wifi_ap_record_t)); return MP_OBJ_FROM_PTR(ap_info); } } mp_obj_t common_hal_wifi_radio_get_ipv4_gateway(wifi_radio_obj_t *self) { if (!esp_netif_is_netif_up(self->netif)) { return mp_const_none; } esp_netif_get_ip_info(self->netif, &self->ip_info); return common_hal_ipaddress_new_ipv4address(self->ip_info.gw.addr); } mp_obj_t common_hal_wifi_radio_get_ipv4_gateway_ap(wifi_radio_obj_t *self) { if (!esp_netif_is_netif_up(self->ap_netif)) { return mp_const_none; } esp_netif_get_ip_info(self->ap_netif, &self->ap_ip_info); return common_hal_ipaddress_new_ipv4address(self->ap_ip_info.gw.addr); } mp_obj_t common_hal_wifi_radio_get_ipv4_subnet(wifi_radio_obj_t *self) { if (!esp_netif_is_netif_up(self->netif)) { return mp_const_none; } esp_netif_get_ip_info(self->netif, &self->ip_info); return common_hal_ipaddress_new_ipv4address(self->ip_info.netmask.addr); } mp_obj_t common_hal_wifi_radio_get_ipv4_subnet_ap(wifi_radio_obj_t *self) { if (!esp_netif_is_netif_up(self->ap_netif)) { return mp_const_none; } esp_netif_get_ip_info(self->ap_netif, &self->ap_ip_info); return common_hal_ipaddress_new_ipv4address(self->ap_ip_info.netmask.addr); } uint32_t wifi_radio_get_ipv4_address(wifi_radio_obj_t *self) { if (!esp_netif_is_netif_up(self->netif)) { return 0; } esp_netif_get_ip_info(self->netif, &self->ip_info); return self->ip_info.ip.addr; } mp_obj_t common_hal_wifi_radio_get_ipv4_address(wifi_radio_obj_t *self) { if (!esp_netif_is_netif_up(self->netif)) { return mp_const_none; } esp_netif_get_ip_info(self->netif, &self->ip_info); return common_hal_ipaddress_new_ipv4address(self->ip_info.ip.addr); } mp_obj_t common_hal_wifi_radio_get_ipv4_address_ap(wifi_radio_obj_t *self) { if (!esp_netif_is_netif_up(self->ap_netif)) { return mp_const_none; } esp_netif_get_ip_info(self->ap_netif, &self->ap_ip_info); return common_hal_ipaddress_new_ipv4address(self->ap_ip_info.ip.addr); } mp_obj_t common_hal_wifi_radio_get_ipv4_dns(wifi_radio_obj_t *self) { if (!esp_netif_is_netif_up(self->netif)) { return mp_const_none; } esp_netif_get_dns_info(self->netif, ESP_NETIF_DNS_MAIN, &self->dns_info); // dns_info is of type esp_netif_dns_info_t, which is just ever so slightly // different than esp_netif_ip_info_t used for // common_hal_wifi_radio_get_ipv4_address (includes both ipv4 and 6), // so some extra jumping is required to get to the actual address return common_hal_ipaddress_new_ipv4address(self->dns_info.ip.u_addr.ip4.addr); } void common_hal_wifi_radio_set_ipv4_dns(wifi_radio_obj_t *self, mp_obj_t ipv4_dns_addr) { esp_netif_dns_info_t dns_addr; ipaddress_ipaddress_to_esp_idf_ip4(ipv4_dns_addr, &dns_addr.ip.u_addr.ip4); esp_netif_set_dns_info(self->netif, ESP_NETIF_DNS_MAIN, &dns_addr); } void common_hal_wifi_radio_start_dhcp_client(wifi_radio_obj_t *self) { esp_netif_dhcpc_start(self->netif); } void common_hal_wifi_radio_stop_dhcp_client(wifi_radio_obj_t *self) { esp_netif_dhcpc_stop(self->netif); } void common_hal_wifi_radio_start_dhcp_server(wifi_radio_obj_t *self) { esp_netif_dhcps_start(self->ap_netif); } void common_hal_wifi_radio_stop_dhcp_server(wifi_radio_obj_t *self) { esp_netif_dhcps_stop(self->ap_netif); } void common_hal_wifi_radio_set_ipv4_address(wifi_radio_obj_t *self, mp_obj_t ipv4, mp_obj_t netmask, mp_obj_t gateway, mp_obj_t ipv4_dns) { common_hal_wifi_radio_stop_dhcp_client(self); // Must stop station DHCP to set a manual address esp_netif_ip_info_t ip_info; ipaddress_ipaddress_to_esp_idf_ip4(ipv4, &ip_info.ip); ipaddress_ipaddress_to_esp_idf_ip4(netmask, &ip_info.netmask); ipaddress_ipaddress_to_esp_idf_ip4(gateway, &ip_info.gw); esp_netif_set_ip_info(self->netif, &ip_info); if (ipv4_dns != MP_OBJ_NULL) { common_hal_wifi_radio_set_ipv4_dns(self, ipv4_dns); } } void common_hal_wifi_radio_set_ipv4_address_ap(wifi_radio_obj_t *self, mp_obj_t ipv4, mp_obj_t netmask, mp_obj_t gateway) { common_hal_wifi_radio_stop_dhcp_server(self); // Must stop access point DHCP to set a manual address esp_netif_ip_info_t ip_info; ipaddress_ipaddress_to_esp_idf_ip4(ipv4, &ip_info.ip); ipaddress_ipaddress_to_esp_idf_ip4(netmask, &ip_info.netmask); ipaddress_ipaddress_to_esp_idf_ip4(gateway, &ip_info.gw); esp_netif_set_ip_info(self->ap_netif, &ip_info); common_hal_wifi_radio_start_dhcp_server(self); // restart access point DHCP } mp_int_t common_hal_wifi_radio_ping(wifi_radio_obj_t *self, mp_obj_t ip_address, mp_float_t timeout) { esp_ping_config_t ping_config = ESP_PING_DEFAULT_CONFIG(); ipaddress_ipaddress_to_esp_idf(ip_address, &ping_config.target_addr); ping_config.count = 1; size_t timeout_ms = timeout * 1000; esp_ping_handle_t ping; CHECK_ESP_RESULT(esp_ping_new_session(&ping_config, NULL, &ping)); esp_ping_start(ping); uint32_t received = 0; uint32_t total_time_ms = 0; uint32_t start_time = common_hal_time_monotonic_ms(); while (received == 0 && (common_hal_time_monotonic_ms() - start_time < timeout_ms) && !mp_hal_is_interrupted()) { RUN_BACKGROUND_TASKS; esp_ping_get_profile(ping, ESP_PING_PROF_DURATION, &total_time_ms, sizeof(total_time_ms)); esp_ping_get_profile(ping, ESP_PING_PROF_REPLY, &received, sizeof(received)); } uint32_t elapsed_time = 0xffffffff; if (received > 0) { esp_ping_get_profile(ping, ESP_PING_PROF_TIMEGAP, &elapsed_time, sizeof(elapsed_time)); } esp_ping_delete_session(ping); return elapsed_time; } void common_hal_wifi_radio_gc_collect(wifi_radio_obj_t *self) { // Only bother to scan the actual object references. gc_collect_ptr(self->current_scan); }