477 lines
16 KiB
C
477 lines
16 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2016 Scott Shawcroft
|
|
* Copyright (c) 2019 Lucian Copeland for Adafruit Industries
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
|
|
#include "shared-bindings/busio/SPI.h"
|
|
#include "py/runtime.h"
|
|
|
|
#include "supervisor/shared/translate/translate.h"
|
|
#include "shared-bindings/microcontroller/Pin.h"
|
|
|
|
// Note that any bugs introduced in this file can cause crashes at startup
|
|
// for chips using external SPI flash.
|
|
|
|
// arrays use 0 based numbering: SPI1 is stored at index 0
|
|
#define MAX_SPI 6
|
|
|
|
STATIC bool reserved_spi[MAX_SPI];
|
|
STATIC bool never_reset_spi[MAX_SPI];
|
|
|
|
#define ALL_CLOCKS 0xFF
|
|
STATIC void spi_clock_enable(uint8_t mask);
|
|
STATIC void spi_clock_disable(uint8_t mask);
|
|
|
|
STATIC uint32_t get_busclock(SPI_TypeDef *instance) {
|
|
#if (CPY_STM32H7)
|
|
if (instance == SPI1 || instance == SPI2 || instance == SPI3) {
|
|
return HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123);
|
|
} else if (instance == SPI4 || instance == SPI5) {
|
|
return HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI45);
|
|
} else {
|
|
return HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI6);
|
|
}
|
|
#elif (CPY_STM32F4 || CPY_STM32F7 || CPY_STM32L4)
|
|
// SPI2 and 3 are on PCLK1, if they exist.
|
|
#ifdef SPI2
|
|
if (instance == SPI2) {
|
|
return HAL_RCC_GetPCLK1Freq();
|
|
}
|
|
#endif
|
|
#ifdef SPI3
|
|
if (instance == SPI3) {
|
|
return HAL_RCC_GetPCLK1Freq();
|
|
}
|
|
#endif
|
|
return HAL_RCC_GetPCLK2Freq();
|
|
#endif
|
|
}
|
|
|
|
STATIC uint32_t stm32_baud_to_spi_div(uint32_t baudrate, uint16_t *prescaler, uint32_t busclock) {
|
|
static const uint32_t baud_map[8][2] = {
|
|
{2, SPI_BAUDRATEPRESCALER_2},
|
|
{4, SPI_BAUDRATEPRESCALER_4},
|
|
{8, SPI_BAUDRATEPRESCALER_8},
|
|
{16, SPI_BAUDRATEPRESCALER_16},
|
|
{32, SPI_BAUDRATEPRESCALER_32},
|
|
{64, SPI_BAUDRATEPRESCALER_64},
|
|
{128, SPI_BAUDRATEPRESCALER_128},
|
|
{256, SPI_BAUDRATEPRESCALER_256}
|
|
};
|
|
size_t i = 0;
|
|
uint16_t divisor;
|
|
do {
|
|
divisor = baud_map[i][0];
|
|
if (baudrate >= (busclock / divisor)) {
|
|
*prescaler = divisor;
|
|
return baud_map[i][1];
|
|
}
|
|
i++;
|
|
} while (divisor != 256);
|
|
// only gets here if requested baud is lower than minimum
|
|
*prescaler = 256;
|
|
return SPI_BAUDRATEPRESCALER_256;
|
|
}
|
|
|
|
void spi_reset(void) {
|
|
uint16_t never_reset_mask = 0x00;
|
|
for (int i = 0; i < MAX_SPI; i++) {
|
|
if (!never_reset_spi[i]) {
|
|
reserved_spi[i] = false;
|
|
} else {
|
|
never_reset_mask |= 1 << i;
|
|
}
|
|
}
|
|
spi_clock_disable(ALL_CLOCKS & ~(never_reset_mask));
|
|
}
|
|
|
|
STATIC const mcu_periph_obj_t *find_pin_function(const mcu_periph_obj_t *table, size_t sz, const mcu_pin_obj_t *pin, int periph_index) {
|
|
for (size_t i = 0; i < sz; i++, table++) {
|
|
if (periph_index == table->periph_index && pin == table->pin) {
|
|
return table;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// match pins to SPI objects
|
|
STATIC int check_pins(busio_spi_obj_t *self,
|
|
const mcu_pin_obj_t *sck, const mcu_pin_obj_t *mosi,
|
|
const mcu_pin_obj_t *miso) {
|
|
bool spi_taken = false;
|
|
|
|
uint8_t sck_len = MP_ARRAY_SIZE(mcu_spi_sck_list);
|
|
uint8_t mosi_len = MP_ARRAY_SIZE(mcu_spi_mosi_list);
|
|
uint8_t miso_len = MP_ARRAY_SIZE(mcu_spi_miso_list);
|
|
|
|
// Loop over each possibility for SCK. Check whether MISO and/or MOSI can be used on the same peripheral
|
|
for (uint i = 0; i < sck_len; i++) {
|
|
const mcu_periph_obj_t *mcu_spi_sck = &mcu_spi_sck_list[i];
|
|
if (mcu_spi_sck->pin != sck) {
|
|
continue;
|
|
}
|
|
|
|
int periph_index = mcu_spi_sck->periph_index;
|
|
|
|
const mcu_periph_obj_t *mcu_spi_miso = NULL;
|
|
if (miso && !(mcu_spi_miso = find_pin_function(mcu_spi_miso_list, miso_len, miso, periph_index))) {
|
|
continue;
|
|
}
|
|
|
|
const mcu_periph_obj_t *mcu_spi_mosi = NULL;
|
|
if (mosi && !(mcu_spi_mosi = find_pin_function(mcu_spi_mosi_list, mosi_len, mosi, periph_index))) {
|
|
continue;
|
|
}
|
|
|
|
if (reserved_spi[periph_index - 1]) {
|
|
spi_taken = true;
|
|
continue;
|
|
}
|
|
|
|
self->sck = mcu_spi_sck;
|
|
self->mosi = mcu_spi_mosi;
|
|
self->miso = mcu_spi_miso;
|
|
|
|
return periph_index;
|
|
}
|
|
|
|
if (spi_taken) {
|
|
mp_raise_ValueError(translate("Hardware in use, try alternative pins"));
|
|
} else {
|
|
raise_ValueError_invalid_pin();
|
|
}
|
|
}
|
|
|
|
void common_hal_busio_spi_construct(busio_spi_obj_t *self,
|
|
const mcu_pin_obj_t *sck, const mcu_pin_obj_t *mosi,
|
|
const mcu_pin_obj_t *miso, bool half_duplex) {
|
|
|
|
int periph_index = check_pins(self, sck, mosi, miso);
|
|
SPI_TypeDef *SPIx = mcu_spi_banks[periph_index - 1];
|
|
|
|
// Start GPIO for each pin
|
|
GPIO_InitTypeDef GPIO_InitStruct = {0};
|
|
GPIO_InitStruct.Pin = pin_mask(sck->number);
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
|
|
GPIO_InitStruct.Alternate = self->sck->altfn_index;
|
|
HAL_GPIO_Init(pin_port(sck->port), &GPIO_InitStruct);
|
|
|
|
if (self->mosi != NULL) {
|
|
GPIO_InitStruct.Pin = pin_mask(mosi->number);
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
|
|
GPIO_InitStruct.Alternate = self->mosi->altfn_index;
|
|
HAL_GPIO_Init(pin_port(mosi->port), &GPIO_InitStruct);
|
|
}
|
|
|
|
if (self->miso != NULL) {
|
|
GPIO_InitStruct.Pin = pin_mask(miso->number);
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
|
|
GPIO_InitStruct.Alternate = self->miso->altfn_index;
|
|
HAL_GPIO_Init(pin_port(miso->port), &GPIO_InitStruct);
|
|
}
|
|
|
|
spi_clock_enable(1 << (self->sck->periph_index - 1));
|
|
reserved_spi[self->sck->periph_index - 1] = true;
|
|
|
|
// Always start at 250khz which is what SD cards need. They are sensitive to
|
|
// SPI bus noise before they are put into SPI mode.
|
|
const uint32_t default_baudrate = 250000UL;
|
|
|
|
self->handle.Instance = SPIx;
|
|
self->handle.Init.Mode = SPI_MODE_MASTER;
|
|
// Direction change only required for RX-only, see RefMan RM0090:884
|
|
if (half_duplex) {
|
|
self->handle.Init.Direction = SPI_DIRECTION_1LINE;
|
|
} else {
|
|
self->handle.Init.Direction = (self->mosi == NULL) ? SPI_DIRECTION_2LINES_RXONLY : SPI_DIRECTION_2LINES;
|
|
}
|
|
self->handle.Init.DataSize = SPI_DATASIZE_8BIT;
|
|
self->handle.Init.CLKPolarity = SPI_POLARITY_LOW;
|
|
self->handle.Init.CLKPhase = SPI_PHASE_1EDGE;
|
|
self->handle.Init.NSS = SPI_NSS_SOFT;
|
|
self->handle.Init.BaudRatePrescaler = stm32_baud_to_spi_div(default_baudrate, &self->prescaler, get_busclock(self->handle.Instance));
|
|
self->handle.Init.FirstBit = SPI_FIRSTBIT_MSB;
|
|
self->handle.Init.TIMode = SPI_TIMODE_DISABLE;
|
|
self->handle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
|
|
self->handle.Init.CRCPolynomial = 10;
|
|
if (HAL_SPI_Init(&self->handle) != HAL_OK) {
|
|
mp_raise_ValueError(translate("SPI init error"));
|
|
}
|
|
self->baudrate = default_baudrate;
|
|
// self->prescaler = 16; // Initialised above by stm32_baud_to_spi_div
|
|
self->half_duplex = half_duplex;
|
|
self->polarity = 0;
|
|
self->phase = 0;
|
|
self->bits = 8;
|
|
|
|
common_hal_mcu_pin_claim(sck);
|
|
if (self->mosi != NULL) {
|
|
common_hal_mcu_pin_claim(mosi);
|
|
}
|
|
if (self->miso != NULL) {
|
|
common_hal_mcu_pin_claim(miso);
|
|
}
|
|
}
|
|
|
|
void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) {
|
|
|
|
never_reset_spi[self->sck->periph_index - 1] = true;
|
|
never_reset_pin_number(self->sck->pin->port, self->sck->pin->number);
|
|
if (self->mosi != NULL) {
|
|
never_reset_pin_number(self->mosi->pin->port, self->mosi->pin->number);
|
|
}
|
|
if (self->miso != NULL) {
|
|
never_reset_pin_number(self->miso->pin->port, self->miso->pin->number);
|
|
}
|
|
}
|
|
|
|
bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) {
|
|
return self->sck == NULL;
|
|
}
|
|
|
|
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
|
|
if (common_hal_busio_spi_deinited(self)) {
|
|
return;
|
|
}
|
|
spi_clock_disable(1 << (self->sck->periph_index - 1));
|
|
reserved_spi[self->sck->periph_index - 1] = false;
|
|
never_reset_spi[self->sck->periph_index - 1] = false;
|
|
|
|
reset_pin_number(self->sck->pin->port, self->sck->pin->number);
|
|
if (self->mosi != NULL) {
|
|
reset_pin_number(self->mosi->pin->port, self->mosi->pin->number);
|
|
}
|
|
if (self->miso != NULL) {
|
|
reset_pin_number(self->miso->pin->port, self->miso->pin->number);
|
|
}
|
|
self->sck = NULL;
|
|
self->mosi = NULL;
|
|
self->miso = NULL;
|
|
}
|
|
|
|
bool common_hal_busio_spi_configure(busio_spi_obj_t *self,
|
|
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
|
|
// This resets the SPI, so check before updating it redundantly
|
|
if (baudrate == self->baudrate && polarity == self->polarity
|
|
&& phase == self->phase && bits == self->bits) {
|
|
return true;
|
|
}
|
|
|
|
// Deinit SPI
|
|
HAL_SPI_DeInit(&self->handle);
|
|
|
|
self->handle.Init.DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT;
|
|
self->handle.Init.CLKPolarity = (polarity) ? SPI_POLARITY_HIGH : SPI_POLARITY_LOW;
|
|
self->handle.Init.CLKPhase = (phase) ? SPI_PHASE_2EDGE : SPI_PHASE_1EDGE;
|
|
|
|
// Set SCK pull up or down based on SPI CLK Polarity
|
|
GPIO_InitTypeDef GPIO_InitStruct = {0};
|
|
GPIO_InitStruct.Pin = pin_mask(self->sck->pin->number);
|
|
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStruct.Pull = (polarity) ? GPIO_PULLUP : GPIO_PULLDOWN;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
|
|
GPIO_InitStruct.Alternate = self->sck->altfn_index;
|
|
HAL_GPIO_Init(pin_port(self->sck->pin->port), &GPIO_InitStruct);
|
|
|
|
self->handle.Init.BaudRatePrescaler = stm32_baud_to_spi_div(baudrate, &self->prescaler,
|
|
get_busclock(self->handle.Instance));
|
|
|
|
if (HAL_SPI_Init(&self->handle) != HAL_OK) {
|
|
mp_raise_RuntimeError(translate("SPI re-init"));
|
|
}
|
|
|
|
self->baudrate = baudrate;
|
|
self->polarity = polarity;
|
|
self->phase = phase;
|
|
self->bits = bits;
|
|
return true;
|
|
}
|
|
|
|
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
|
|
bool grabbed_lock = false;
|
|
|
|
// Critical section code that may be required at some point.
|
|
// uint32_t store_primask = __get_PRIMASK();
|
|
// __disable_irq();
|
|
// __DMB();
|
|
|
|
if (!self->has_lock) {
|
|
grabbed_lock = true;
|
|
self->has_lock = true;
|
|
}
|
|
|
|
// __DMB();
|
|
// __set_PRIMASK(store_primask);
|
|
|
|
return grabbed_lock;
|
|
}
|
|
|
|
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
|
|
return self->has_lock;
|
|
}
|
|
|
|
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
|
|
self->has_lock = false;
|
|
}
|
|
|
|
bool common_hal_busio_spi_write(busio_spi_obj_t *self,
|
|
const uint8_t *data, size_t len) {
|
|
if (self->mosi == NULL) {
|
|
mp_raise_ValueError_varg(translate("No %q pin"), MP_QSTR_mosi);
|
|
}
|
|
HAL_StatusTypeDef result = HAL_SPI_Transmit(&self->handle, (uint8_t *)data, (uint16_t)len, HAL_MAX_DELAY);
|
|
return result == HAL_OK;
|
|
}
|
|
|
|
bool common_hal_busio_spi_read(busio_spi_obj_t *self,
|
|
uint8_t *data, size_t len, uint8_t write_value) {
|
|
if (self->miso == NULL && !self->half_duplex) {
|
|
mp_raise_ValueError_varg(translate("No %q pin"), MP_QSTR_miso);
|
|
} else if (self->half_duplex && self->mosi == NULL) {
|
|
mp_raise_ValueError_varg(translate("No %q pin"), MP_QSTR_mosi);
|
|
}
|
|
HAL_StatusTypeDef result = HAL_OK;
|
|
if ((!self->half_duplex && self->mosi == NULL) || (self->half_duplex && self->mosi != NULL && self->miso == NULL)) {
|
|
result = HAL_SPI_Receive(&self->handle, data, (uint16_t)len, HAL_MAX_DELAY);
|
|
} else {
|
|
memset(data, write_value, len);
|
|
result = HAL_SPI_TransmitReceive(&self->handle, data, data, (uint16_t)len, HAL_MAX_DELAY);
|
|
}
|
|
return result == HAL_OK;
|
|
}
|
|
|
|
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self,
|
|
const uint8_t *data_out, uint8_t *data_in, size_t len) {
|
|
if (self->mosi == NULL && data_out != NULL) {
|
|
mp_raise_ValueError_varg(translate("No %q pin"), MP_QSTR_mosi);
|
|
}
|
|
if (self->miso == NULL && data_in != NULL) {
|
|
mp_raise_ValueError_varg(translate("No %q pin"), MP_QSTR_miso);
|
|
}
|
|
HAL_StatusTypeDef result = HAL_SPI_TransmitReceive(&self->handle,
|
|
(uint8_t *)data_out, data_in, (uint16_t)len, HAL_MAX_DELAY);
|
|
return result == HAL_OK;
|
|
}
|
|
|
|
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t *self) {
|
|
// returns actual frequency
|
|
uint32_t result = get_busclock(self->handle.Instance) / self->prescaler;
|
|
return result;
|
|
}
|
|
|
|
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t *self) {
|
|
return self->phase;
|
|
}
|
|
|
|
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t *self) {
|
|
return self->polarity;
|
|
}
|
|
|
|
STATIC void spi_clock_enable(uint8_t mask) {
|
|
#ifdef SPI1
|
|
if (mask & (1 << 0)) {
|
|
__HAL_RCC_SPI1_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#ifdef SPI2
|
|
if (mask & (1 << 1)) {
|
|
__HAL_RCC_SPI2_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#ifdef SPI3
|
|
if (mask & (1 << 2)) {
|
|
__HAL_RCC_SPI3_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#ifdef SPI4
|
|
if (mask & (1 << 3)) {
|
|
__HAL_RCC_SPI4_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#ifdef SPI5
|
|
if (mask & (1 << 4)) {
|
|
__HAL_RCC_SPI5_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
#ifdef SPI6
|
|
if (mask & (1 << 5)) {
|
|
__HAL_RCC_SPI6_CLK_ENABLE();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
STATIC void spi_clock_disable(uint8_t mask) {
|
|
#ifdef SPI1
|
|
if (mask & (1 << 0)) {
|
|
__HAL_RCC_SPI1_CLK_DISABLE();
|
|
__HAL_RCC_SPI1_FORCE_RESET();
|
|
__HAL_RCC_SPI1_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#ifdef SPI2
|
|
if (mask & (1 << 1)) {
|
|
__HAL_RCC_SPI2_CLK_DISABLE();
|
|
__HAL_RCC_SPI2_FORCE_RESET();
|
|
__HAL_RCC_SPI2_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#ifdef SPI3
|
|
if (mask & (1 << 2)) {
|
|
__HAL_RCC_SPI3_CLK_DISABLE();
|
|
__HAL_RCC_SPI3_FORCE_RESET();
|
|
__HAL_RCC_SPI3_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#ifdef SPI4
|
|
if (mask & (1 << 3)) {
|
|
__HAL_RCC_SPI4_CLK_DISABLE();
|
|
__HAL_RCC_SPI4_FORCE_RESET();
|
|
__HAL_RCC_SPI4_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#ifdef SPI5
|
|
if (mask & (1 << 4)) {
|
|
__HAL_RCC_SPI5_CLK_DISABLE();
|
|
__HAL_RCC_SPI5_FORCE_RESET();
|
|
__HAL_RCC_SPI5_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#ifdef SPI6
|
|
if (mask & (1 << 5)) {
|
|
__HAL_RCC_SPI6_CLK_DISABLE();
|
|
__HAL_RCC_SPI6_FORCE_RESET();
|
|
__HAL_RCC_SPI6_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
}
|