circuitpython/ports/espressif/bindings/espnow/ESPNow.c

617 lines
23 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017-2020 Nick Moore
* Copyright (c) 2018 shawwwn <shawwwn1@gmail.com>
* Copyright (c) 2020-2021 Glenn Moloney @glenn20
* Copyright (c) 2023 MicroDev
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "esp_now.h"
#include "py/runtime.h"
#include "py/objarray.h"
#include "py/objproperty.h"
#include "py/stream.h"
#include "py/ringbuf.h"
#include "mphalport.h"
#include "bindings/espnow/__init__.h"
#include "bindings/espnow/ESPNow.h"
#include "shared-bindings/util.h"
#include "common-hal/espnow/ESPNow.h"
static void check_esp_err(esp_err_t status) {
if (status != ESP_OK) {
mp_raise_RuntimeError(translate("an error occured"));
}
}
// --- Initialisation and Config functions ---
static void check_for_deinit(espnow_obj_t *self) {
if (common_hal_espnow_deinited(self)) {
raise_deinited_error();
}
}
//| class ESPNow:
//| """Provides access to the ESP-NOW protocol."""
//|
//| def __init__(self, buffer_size: Optional[int], phy_rate: Optional[int]) -> None:
//| """Allocate and initialize `ESPNow` instance as a singleton.
//|
//| :param int buffer_size: The size of the internal ring buffer. Default: 526 bytes.
//| :param int phy_rate: The ESP-NOW physical layer rate. Default: 1 Mbps."""
//| ...
STATIC mp_obj_t espnow_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_buffer_size, ARG_phy_rate };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_buffer_size, MP_ARG_INT, { .u_int = 526 } },
{ MP_QSTR_phy_rate, MP_ARG_INT, { .u_int = WIFI_PHY_RATE_1M_L } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
espnow_obj_t *self = MP_STATE_PORT(espnow_singleton);
if (self != NULL) {
mp_raise_RuntimeError(translate("Already running"));
}
self = m_new_obj(espnow_obj_t);
self->base.type = &espnow_type;
common_hal_espnow_set_buffer_size(self, args[ARG_buffer_size].u_int);
common_hal_espnow_set_phy_rate(self, args[ARG_phy_rate].u_int);
self->peers_table = mp_obj_new_dict(0);
// Prevent user code modifying the dict
mp_obj_dict_get_map(self->peers_table)->is_fixed = 1;
// Set the global singleton pointer for the espnow protocol.
MP_STATE_PORT(espnow_singleton) = self;
common_hal_espnow_init(self);
return self;
}
// Return C pointer to byte memory string/bytes/bytearray in obj.
// Raise ValueError if the length does not match expected len.
static const uint8_t *_get_bytes_len(mp_obj_t obj, size_t len, mp_uint_t rw) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(obj, &bufinfo, rw);
mp_arg_validate_length(bufinfo.len, len, MP_QSTR_buffer);
return (uint8_t *)bufinfo.buf;
}
//| def set_pmk(self, pmk: ReadableBuffer) -> None:
//| """Set the ESP-NOW Primary Master Key (pmk) for encrypted communications.
//|
//| :param ReadableBuffer pmk: The ESP-NOW Primary Master Key (length = 16 bytes)."""
//| ...
STATIC mp_obj_t espnow_set_pmk(mp_obj_t self_in, mp_obj_t key) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_espnow_set_pmk(self, _get_bytes_len(key, ESP_NOW_KEY_LEN, MP_BUFFER_READ));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_pmk_obj, espnow_set_pmk);
//| active: bool
//| """Initialize or de-initialize the `ESPNow` communication protocol."""
//|
STATIC mp_obj_t espnow_get_active(const mp_obj_t self_in) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_bool(!common_hal_espnow_deinited(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_active_obj, espnow_get_active);
STATIC mp_obj_t espnow_set_active(const mp_obj_t self_in, const mp_obj_t value) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_is_true(value) ? common_hal_espnow_init(self) : common_hal_espnow_deinit(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_active_obj, espnow_set_active);
MP_PROPERTY_GETSET(espnow_active_obj,
(mp_obj_t)&espnow_get_active_obj,
(mp_obj_t)&espnow_set_active_obj);
//| buffer_size: int
//| """The size of the internal ring buffer."""
//|
STATIC mp_obj_t espnow_get_buffer_size(const mp_obj_t self_in) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(self->recv_buffer_size);
}
MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_buffer_size_obj, espnow_get_buffer_size);
STATIC mp_obj_t espnow_set_buffer_size(const mp_obj_t self_in, const mp_obj_t value) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_espnow_set_buffer_size(self, mp_obj_get_int(value));
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_buffer_size_obj, espnow_set_buffer_size);
MP_PROPERTY_GETSET(espnow_buffer_size_obj,
(mp_obj_t)&espnow_get_buffer_size_obj,
(mp_obj_t)&espnow_set_buffer_size_obj);
//| phy_rate: int
//| """The ESP-NOW physical layer rate."""
//|
STATIC mp_obj_t espnow_get_phy_rate(const mp_obj_t self_in) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(self->phy_rate);
}
MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_phy_rate_obj, espnow_get_phy_rate);
STATIC mp_obj_t espnow_set_phy_rate(const mp_obj_t self_in, const mp_obj_t value) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_espnow_set_phy_rate(self, mp_obj_get_int(value));
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_phy_rate_obj, espnow_set_phy_rate);
MP_PROPERTY_GETSET(espnow_phy_rate_obj,
(mp_obj_t)&espnow_get_phy_rate_obj,
(mp_obj_t)&espnow_set_phy_rate_obj);
//| stats: Tuple[int, int, int, int, int]
//| """Provide some useful stats in a `tuple` of
//| (tx_packets, tx_responses, tx_failures, rx_packets, rx_failures). (read-only)"""
//|
STATIC mp_obj_t espnow_get_stats(mp_obj_t self_in) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_TUPLE(
mp_obj_new_int(self->tx_packets),
mp_obj_new_int(self->tx_responses),
mp_obj_new_int(self->tx_failures),
mp_obj_new_int(self->rx_packets),
mp_obj_new_int(self->rx_failures));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_stats_obj, espnow_get_stats);
MP_PROPERTY_GETTER(espnow_stats_obj,
(mp_obj_t)&espnow_get_stats_obj);
// --- Maintaining the peer table and reading RSSI values ---
// We maintain a peers table for several reasons, to:
// - support monitoring the RSSI values for all peers; and
// - to return unique bytestrings for each peer which supports more efficient
// application memory usage and peer handling.
// Get the RSSI value from the wifi packet header
static inline int8_t _get_rssi_from_wifi_packet(const uint8_t *msg) {
// Warning: Secret magic to get the rssi from the wifi packet header
// See espnow.c:espnow_recv_cb() at https://github.com/espressif/esp-now/
// In the wifi packet the msg comes after a wifi_promiscuous_pkt_t
// and a espnow_frame_format_t.
// Backtrack to get a pointer to the wifi_promiscuous_pkt_t.
#define SIZEOF_ESPNOW_FRAME_FORMAT 39
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
wifi_promiscuous_pkt_t *wifi_packet = (wifi_promiscuous_pkt_t *)(
msg - SIZEOF_ESPNOW_FRAME_FORMAT - sizeof(wifi_promiscuous_pkt_t));
#pragma GCC diagnostic pop
return wifi_packet->rx_ctrl.rssi;
}
// --- Handling espnow packets in the recv buffer ---
// --- Send and Receive ESP-NOW data ---
// Return C pointer to the MAC address.
// Raise ValueError if mac is wrong type or is not 6 bytes long.
static const uint8_t *_get_peer_addr(mp_obj_t mac) {
return mp_obj_is_true(mac) ? _get_bytes_len(mac, ESP_NOW_ETH_ALEN, MP_BUFFER_READ) : NULL;
}
//| def send(
//| self,
//| message: ReadableBuffer,
//| mac: Optional[ReadableBuffer],
//| sync: bool = True,
//| ) -> bool:
//| """Send a message to the peer's mac address. Optionally wait for a response.
//|
//| :param ReadableBuffer message: The message to send (length <= 250 bytes).
//| :param ReadableBuffer mac: The peer's address (length = 6 bytes). If `None` or any non-true value, send to all registered peers.
//| :param bool sync: If `True`, wait for response from peer(s) after sending.
//|
//| :returns:
//| `True` if sync == `False` and message sent successfully.
//| `True` if sync == `True` and message is received successfully by all recipients
//| `False` if sync == `True` and message is not received by at least one recipient
//|
//| :raises EAGAIN: if the internal espnow buffers are full."""
//| ...
STATIC mp_obj_t espnow_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_message, ARG_mac, ARG_sync };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_message, MP_ARG_OBJ | MP_ARG_REQUIRED },
{ MP_QSTR_mac, MP_ARG_OBJ, { .u_obj = mp_const_none } },
{ MP_QSTR_sync, MP_ARG_BOOL, { .u_bool = mp_const_true } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
espnow_obj_t *self = pos_args[0];
check_for_deinit(self);
const bool sync = mp_obj_is_true(args[ARG_sync].u_obj);
const uint8_t *peer_addr = _get_peer_addr(args[ARG_mac].u_obj);
// Get a pointer to the data buffer of the message
mp_buffer_info_t message;
mp_get_buffer_raise(args[ARG_message].u_obj, &message, MP_BUFFER_READ);
return common_hal_espnow_send(self, sync, peer_addr, &message);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_send_obj, 2, espnow_send);
//| def recv(self) -> Optional[ESPNowPacket]:
//| """Receive a message from the peer(s).
//|
//| :returns: An `ESPNowPacket` if available in the buffer, otherwise `None`."""
//| ...
STATIC mp_obj_t espnow_recv(mp_obj_t self_in, mp_obj_t buffers) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return common_hal_espnow_recv(self);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_recv_obj, espnow_recv);
// --- Peer Management Functions ---
// Common code for add_peer() and mod_peer() to process the args.
static void _update_peer_info(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, bool modify) {
enum { ARG_mac, ARG_lmk, ARG_channel, ARG_interface, ARG_encrypt };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mac, MP_ARG_OBJ | MP_ARG_REQUIRED },
{ MP_QSTR_lmk, MP_ARG_OBJ, { .u_obj = mp_const_none } },
{ MP_QSTR_channel, MP_ARG_INT, { .u_obj = mp_const_none } },
{ MP_QSTR_interface,MP_ARG_INT, { .u_obj = mp_const_none } },
{ MP_QSTR_encrypt, MP_ARG_BOOL,{ .u_obj = mp_const_none } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
esp_now_peer_info_t peer = {0};
memcpy(peer.peer_addr, _get_peer_addr(args[ARG_mac].u_obj), ESP_NOW_ETH_ALEN);
if (modify) {
if (esp_now_get_peer(peer.peer_addr, &peer) != ESP_OK) {
mp_raise_RuntimeError(translate("peer not found"));
}
} else {
if (esp_now_is_peer_exist(peer.peer_addr)) {
mp_raise_RuntimeError(translate("peer already exists"));
}
peer.channel = 0;
peer.ifidx = WIFI_IF_STA;
peer.encrypt = false;
}
const mp_obj_t channel = args[ARG_channel].u_obj;
if (channel != mp_const_none) {
peer.channel = mp_arg_validate_int_range(mp_obj_get_int(channel), 0, 14, MP_QSTR_channel);
}
const mp_obj_t interface = args[ARG_interface].u_obj;
if (interface != mp_const_none) {
peer.ifidx = (wifi_interface_t)mp_arg_validate_int_range(mp_obj_get_int(interface), 0, 1, MP_QSTR_interface);
}
const mp_obj_t encrypt = args[ARG_encrypt].u_obj;
if (encrypt != mp_const_none) {
peer.encrypt = mp_obj_is_true(encrypt);
}
const mp_obj_t lmk = args[ARG_lmk].u_obj;
if (lmk != mp_const_none) {
memcpy(peer.lmk, _get_bytes_len(lmk, ESP_NOW_KEY_LEN, MP_BUFFER_READ), ESP_NOW_KEY_LEN);
} else if (peer.encrypt) {
mp_raise_ValueError_varg(translate("%q is %q"), MP_QSTR_lmk, MP_QSTR_None);
}
check_esp_err((modify) ? esp_now_mod_peer(&peer) : esp_now_add_peer(&peer));
}
// Update the cached peer count in self->peers_count;
// The peers_count ignores broadcast and multicast addresses and is used for the
// send() logic and is updated from add_peer(), mod_peer() and del_peer().
static void _update_peer_count(espnow_obj_t *self) {
esp_now_peer_info_t peer = {0};
bool from_head = true;
int count = 0;
// esp_now_fetch_peer() skips over any broadcast or multicast addresses
while (esp_now_fetch_peer(from_head, &peer) == ESP_OK) {
from_head = false;
if (++count >= ESP_NOW_MAX_TOTAL_PEER_NUM) {
break; // Should not happen
}
}
self->peers_count = count;
}
//| def add_peer(
//| self,
//| mac: ReadableBuffer,
//| lmk: Optional[ReadableBuffer],
//| channel: int = 0,
//| interface: int = 0,
//| encrypt: bool = False,
//| ) -> None:
//| """Add peer.
//|
//| :param ReadableBuffer mac: The mac address of the peer.
//| :param ReadableBuffer lmk: The Local Master Key (lmk) of the peer.
//| :param int channel: The peer's channel. Default: 0 ie. use the current channel.
//| :param int interface: The WiFi interface to use. Default: 0 ie. STA.
//| :param bool encrypt: Whether or not to use encryption."""
//| ...
STATIC mp_obj_t espnow_add_peer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
espnow_obj_t *self = pos_args[0];
check_for_deinit(self);
_update_peer_info(n_args, pos_args, kw_args, false);
_update_peer_count(self);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_add_peer_obj, 2, espnow_add_peer);
//| def mod_peer(
//| self,
//| mac: ReadableBuffer,
//| lmk: Optional[ReadableBuffer],
//| channel: int = 0,
//| interface: int = 0,
//| encrypt: bool = False,
//| ) -> None:
//| """Modify peer.
//|
//| :param ReadableBuffer mac: The mac address of the peer.
//| :param ReadableBuffer lmk: The Local Master Key (lmk) of the peer.
//| :param int channel: The peer's channel. Default: 0 ie. use the current channel.
//| :param int interface: The WiFi interface to use. Default: 0 ie. STA.
//| :param bool encrypt: Whether or not to use encryption."""
//| ...
STATIC mp_obj_t espnow_mod_peer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
espnow_obj_t *self = pos_args[0];
check_for_deinit(self);
_update_peer_info(n_args, pos_args, kw_args, true);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_mod_peer_obj, 2, espnow_mod_peer);
//| def del_peer(self, mac: ReadableBuffer) -> None:
//| """Delete peer.
//|
//| :param ReadableBuffer mac: The mac address of the peer."""
//| ...
STATIC mp_obj_t espnow_del_peer(mp_obj_t self_in, mp_obj_t mac) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
uint8_t peer_addr[ESP_NOW_ETH_ALEN];
memcpy(peer_addr, _get_peer_addr(mac), ESP_NOW_ETH_ALEN);
check_esp_err(esp_now_del_peer(peer_addr));
_update_peer_count(self);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_del_peer_obj, espnow_del_peer);
// Convert a peer_info struct to python tuple
// Used by espnow_get_peer() and espnow_get_peers()
static mp_obj_t _peer_info_to_tuple(const esp_now_peer_info_t *peer) {
return MP_OBJ_NEW_TUPLE(
mp_obj_new_bytes(peer->peer_addr, MP_ARRAY_SIZE(peer->peer_addr)),
mp_obj_new_bytes(peer->lmk, MP_ARRAY_SIZE(peer->lmk)),
mp_obj_new_int(peer->channel),
mp_obj_new_int(peer->ifidx),
mp_obj_new_bool(peer->encrypt));
}
//| def get_peer(self, mac: ReadableBuffer) -> Tuple[bytes, int, int, bool]:
//| """Get the peer info for mac as a `tuple`.
//|
//| :param ReadableBuffer mac: The mac address of the peer.
//|
//| :returns: A `tuple` of (mac, lmk, channel, interface, encrypt)."""
//| ...
STATIC mp_obj_t espnow_get_peer(mp_obj_t self_in, mp_obj_t mac) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
esp_now_peer_info_t peer = {0};
memcpy(peer.peer_addr, _get_peer_addr(mac), ESP_NOW_ETH_ALEN);
check_esp_err(esp_now_get_peer(peer.peer_addr, &peer));
return _peer_info_to_tuple(&peer);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_get_peer_obj, espnow_get_peer);
// --- Peer Related Properties ---
//| peers: Tuple[Tuple[bytes, bytes, int, int, bool], ...]
//| """The peer info records for all registered `ESPNow` peers. (read-only)
//|
//| A `tuple` of tuples: ((mac, lmk, channel, interface, encrypt), ...)."""
//|
STATIC mp_obj_t espnow_get_peers(mp_obj_t self_in) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
// Build and initialize the peer info tuple.
mp_obj_tuple_t *peerinfo_tuple = mp_obj_new_tuple(self->peers_count, NULL);
esp_now_peer_info_t peer = {0};
for (size_t i = 0; i < peerinfo_tuple->len; i++) {
esp_err_t status = esp_now_fetch_peer((i == 0), &peer);
peerinfo_tuple->items[i] = (status == ESP_OK ? _peer_info_to_tuple(&peer) : mp_const_none);
}
return peerinfo_tuple;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_obj, espnow_get_peers);
MP_PROPERTY_GETTER(espnow_peers_obj,
(mp_obj_t)&espnow_get_peers_obj);
//| peers_count: Tuple[int, int]
//| """The number of registered peers in a `tuple` of (num_total_peers, num_encrypted_peers). (read-only)"""
//|
STATIC mp_obj_t espnow_get_peers_count(mp_obj_t self_in) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
esp_now_peer_num_t peer_num = {0};
check_esp_err(esp_now_get_peer_num(&peer_num));
return MP_OBJ_NEW_TUPLE(
mp_obj_new_int(peer_num.total_num),
mp_obj_new_int(peer_num.encrypt_num));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_count_obj, espnow_get_peers_count);
MP_PROPERTY_GETTER(espnow_peers_count_obj,
(mp_obj_t)&espnow_get_peers_count_obj);
//| peers_table: Dict[bytes, List[int]]
//| """The dictionary of peers we have seen. (read-only)
//|
//| A `dict` of {peer: [rssi, time], ...}
//|
//| where:
//| peer is a byte string containing the 6-byte mac address of the peer.
//| rssi is the wifi signal strength from the last msg received (in dBm from -127 to 0).
//| time is the time in milliseconds since device last booted."""
//|
STATIC mp_obj_t espnow_get_peers_table(mp_obj_t self_in) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
return self->peers_table;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_table_obj, espnow_get_peers_table);
MP_PROPERTY_GETTER(espnow_peers_table_obj,
(mp_obj_t)&espnow_get_peers_table_obj);
STATIC const mp_rom_map_elem_t espnow_locals_dict_table[] = {
// Config parameters
{ MP_ROM_QSTR(MP_QSTR_set_pmk), MP_ROM_PTR(&espnow_set_pmk_obj) },
{ MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&espnow_active_obj) },
{ MP_ROM_QSTR(MP_QSTR_buffer_size), MP_ROM_PTR(&espnow_buffer_size_obj) },
{ MP_ROM_QSTR(MP_QSTR_phy_rate), MP_ROM_PTR(&espnow_phy_rate_obj) },
{ MP_ROM_QSTR(MP_QSTR_stats), MP_ROM_PTR(&espnow_stats_obj) },
// Send and receive messages
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&espnow_send_obj) },
{ MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&espnow_recv_obj) },
// Peer management functions
{ MP_ROM_QSTR(MP_QSTR_add_peer), MP_ROM_PTR(&espnow_add_peer_obj) },
{ MP_ROM_QSTR(MP_QSTR_mod_peer), MP_ROM_PTR(&espnow_mod_peer_obj) },
{ MP_ROM_QSTR(MP_QSTR_del_peer), MP_ROM_PTR(&espnow_del_peer_obj) },
{ MP_ROM_QSTR(MP_QSTR_get_peer), MP_ROM_PTR(&espnow_get_peer_obj) },
// Peer related properties
{ MP_ROM_QSTR(MP_QSTR_peers), MP_ROM_PTR(&espnow_peers_obj) },
{ MP_ROM_QSTR(MP_QSTR_peers_count), MP_ROM_PTR(&espnow_peers_count_obj) },
{ MP_ROM_QSTR(MP_QSTR_peers_table), MP_ROM_PTR(&espnow_peers_table_obj) },
};
STATIC MP_DEFINE_CONST_DICT(espnow_locals_dict, espnow_locals_dict_table);
// --- Dummy Buffer Protocol support ---
// ...so asyncio can poll.ipoll() on this device
// Support ioctl(MP_STREAM_POLL, ) for asyncio
STATIC mp_uint_t espnow_stream_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
if (request != MP_STREAM_POLL) {
*errcode = MP_EINVAL;
return MP_STREAM_ERROR;
}
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
return (common_hal_espnow_deinited(self)) ? 0 : // If not initialized
arg ^ (
// If no data in the buffer, unset the Read ready flag
((!ringbuf_num_filled(self->recv_buffer)) ? MP_STREAM_POLL_RD : 0) |
// If still waiting for responses, unset the Write ready flag
((self->tx_responses < self->tx_packets) ? MP_STREAM_POLL_WR : 0));
}
STATIC const mp_stream_p_t espnow_stream_p = {
.ioctl = espnow_stream_ioctl,
};
//| def __bool__(self) -> bool:
//| """``True`` if `len()` is greater than zero.
//| This is an easy way to check if the buffer is empty.
//| """
//| ...
//| def __len__(self) -> int:
//| """Return the number of `bytes` available to read. Used to implement ``len()``."""
//| ...
STATIC mp_obj_t espnow_unary_op(mp_unary_op_t op, mp_obj_t self_in) {
espnow_obj_t *self = MP_OBJ_TO_PTR(self_in);
size_t len = ringbuf_num_filled(self->recv_buffer);
switch (op) {
case MP_UNARY_OP_BOOL:
return mp_obj_new_bool(len != 0);
case MP_UNARY_OP_LEN:
return mp_obj_new_int_from_uint(len);
default:
return MP_OBJ_NULL; // op not supported
}
}
const mp_obj_type_t espnow_type = {
{ &mp_type_type },
.name = MP_QSTR_ESPNow,
.make_new = espnow_make_new,
.locals_dict = (mp_obj_t)&espnow_locals_dict,
.flags = MP_TYPE_FLAG_EXTENDED,
MP_TYPE_EXTENDED_FIELDS(
.protocol = &espnow_stream_p,
.unary_op = &espnow_unary_op
),
};