/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017-2020 Nick Moore * Copyright (c) 2018 shawwwn * Copyright (c) 2020-2021 Glenn Moloney @glenn20 * Copyright (c) 2023 MicroDev * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "esp_now.h" #include "py/runtime.h" #include "py/objarray.h" #include "py/objproperty.h" #include "py/stream.h" #include "py/ringbuf.h" #include "mphalport.h" #include "bindings/espnow/__init__.h" #include "bindings/espnow/ESPNow.h" #include "shared-bindings/util.h" #include "common-hal/espnow/ESPNow.h" static void check_esp_err(esp_err_t status) { if (status != ESP_OK) { mp_raise_RuntimeError(translate("an error occured")); } } // --- Initialisation and Config functions --- static void check_for_deinit(espnow_obj_t *self) { if (common_hal_espnow_deinited(self)) { raise_deinited_error(); } } //| class ESPNow: //| """Provides access to the ESP-NOW protocol.""" //| //| def __init__(self, buffer_size: Optional[int], phy_rate: Optional[int]) -> None: //| """Allocate and initialize `ESPNow` instance as a singleton. //| //| :param int buffer_size: The size of the internal ring buffer. Default: 526 bytes. //| :param int phy_rate: The ESP-NOW physical layer rate. Default: 1 Mbps.""" //| ... STATIC mp_obj_t espnow_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_buffer_size, ARG_phy_rate }; static const mp_arg_t allowed_args[] = { { MP_QSTR_buffer_size, MP_ARG_INT, { .u_int = 526 } }, { MP_QSTR_phy_rate, MP_ARG_INT, { .u_int = WIFI_PHY_RATE_1M_L } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); espnow_obj_t *self = MP_STATE_PORT(espnow_singleton); if (self != NULL) { mp_raise_RuntimeError(translate("Already running")); } self = m_new_obj(espnow_obj_t); self->base.type = &espnow_type; common_hal_espnow_set_buffer_size(self, args[ARG_buffer_size].u_int); common_hal_espnow_set_phy_rate(self, args[ARG_phy_rate].u_int); self->peers_table = mp_obj_new_dict(0); // Prevent user code modifying the dict mp_obj_dict_get_map(self->peers_table)->is_fixed = 1; // Set the global singleton pointer for the espnow protocol. MP_STATE_PORT(espnow_singleton) = self; common_hal_espnow_init(self); return self; } // Return C pointer to byte memory string/bytes/bytearray in obj. // Raise ValueError if the length does not match expected len. static const uint8_t *_get_bytes_len(mp_obj_t obj, size_t len, mp_uint_t rw) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(obj, &bufinfo, rw); mp_arg_validate_length(bufinfo.len, len, MP_QSTR_buffer); return (uint8_t *)bufinfo.buf; } //| def set_pmk(self, pmk: ReadableBuffer) -> None: //| """Set the ESP-NOW Primary Master Key (pmk) for encrypted communications. //| //| :param ReadableBuffer pmk: The ESP-NOW Primary Master Key (length = 16 bytes).""" //| ... STATIC mp_obj_t espnow_set_pmk(mp_obj_t self_in, mp_obj_t key) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); common_hal_espnow_set_pmk(self, _get_bytes_len(key, ESP_NOW_KEY_LEN, MP_BUFFER_READ)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_pmk_obj, espnow_set_pmk); //| active: bool //| """Initialize or de-initialize the `ESPNow` communication protocol.""" //| STATIC mp_obj_t espnow_get_active(const mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return mp_obj_new_bool(!common_hal_espnow_deinited(self)); } MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_active_obj, espnow_get_active); STATIC mp_obj_t espnow_set_active(const mp_obj_t self_in, const mp_obj_t value) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_is_true(value) ? common_hal_espnow_init(self) : common_hal_espnow_deinit(self); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_active_obj, espnow_set_active); MP_PROPERTY_GETSET(espnow_active_obj, (mp_obj_t)&espnow_get_active_obj, (mp_obj_t)&espnow_set_active_obj); //| buffer_size: int //| """The size of the internal ring buffer.""" //| STATIC mp_obj_t espnow_get_buffer_size(const mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(self->recv_buffer_size); } MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_buffer_size_obj, espnow_get_buffer_size); STATIC mp_obj_t espnow_set_buffer_size(const mp_obj_t self_in, const mp_obj_t value) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); common_hal_espnow_set_buffer_size(self, mp_obj_get_int(value)); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_buffer_size_obj, espnow_set_buffer_size); MP_PROPERTY_GETSET(espnow_buffer_size_obj, (mp_obj_t)&espnow_get_buffer_size_obj, (mp_obj_t)&espnow_set_buffer_size_obj); //| phy_rate: int //| """The ESP-NOW physical layer rate.""" //| STATIC mp_obj_t espnow_get_phy_rate(const mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(self->phy_rate); } MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_phy_rate_obj, espnow_get_phy_rate); STATIC mp_obj_t espnow_set_phy_rate(const mp_obj_t self_in, const mp_obj_t value) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); common_hal_espnow_set_phy_rate(self, mp_obj_get_int(value)); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_phy_rate_obj, espnow_set_phy_rate); MP_PROPERTY_GETSET(espnow_phy_rate_obj, (mp_obj_t)&espnow_get_phy_rate_obj, (mp_obj_t)&espnow_set_phy_rate_obj); //| stats: Tuple[int, int, int, int, int] //| """Provide some useful stats in a `tuple` of //| (tx_packets, tx_responses, tx_failures, rx_packets, rx_failures). (read-only)""" //| STATIC mp_obj_t espnow_get_stats(mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_TUPLE( mp_obj_new_int(self->tx_packets), mp_obj_new_int(self->tx_responses), mp_obj_new_int(self->tx_failures), mp_obj_new_int(self->rx_packets), mp_obj_new_int(self->rx_failures)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_stats_obj, espnow_get_stats); MP_PROPERTY_GETTER(espnow_stats_obj, (mp_obj_t)&espnow_get_stats_obj); // --- Maintaining the peer table and reading RSSI values --- // We maintain a peers table for several reasons, to: // - support monitoring the RSSI values for all peers; and // - to return unique bytestrings for each peer which supports more efficient // application memory usage and peer handling. // Get the RSSI value from the wifi packet header static inline int8_t _get_rssi_from_wifi_packet(const uint8_t *msg) { // Warning: Secret magic to get the rssi from the wifi packet header // See espnow.c:espnow_recv_cb() at https://github.com/espressif/esp-now/ // In the wifi packet the msg comes after a wifi_promiscuous_pkt_t // and a espnow_frame_format_t. // Backtrack to get a pointer to the wifi_promiscuous_pkt_t. #define SIZEOF_ESPNOW_FRAME_FORMAT 39 #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" wifi_promiscuous_pkt_t *wifi_packet = (wifi_promiscuous_pkt_t *)( msg - SIZEOF_ESPNOW_FRAME_FORMAT - sizeof(wifi_promiscuous_pkt_t)); #pragma GCC diagnostic pop return wifi_packet->rx_ctrl.rssi; } // --- Handling espnow packets in the recv buffer --- // --- Send and Receive ESP-NOW data --- // Return C pointer to the MAC address. // Raise ValueError if mac is wrong type or is not 6 bytes long. static const uint8_t *_get_peer_addr(mp_obj_t mac) { return mp_obj_is_true(mac) ? _get_bytes_len(mac, ESP_NOW_ETH_ALEN, MP_BUFFER_READ) : NULL; } //| def send( //| self, //| message: ReadableBuffer, //| mac: Optional[ReadableBuffer], //| sync: bool = True, //| ) -> bool: //| """Send a message to the peer's mac address. Optionally wait for a response. //| //| :param ReadableBuffer message: The message to send (length <= 250 bytes). //| :param ReadableBuffer mac: The peer's address (length = 6 bytes). If `None` or any non-true value, send to all registered peers. //| :param bool sync: If `True`, wait for response from peer(s) after sending. //| //| :returns: //| `True` if sync == `False` and message sent successfully. //| `True` if sync == `True` and message is received successfully by all recipients //| `False` if sync == `True` and message is not received by at least one recipient //| //| :raises EAGAIN: if the internal espnow buffers are full.""" //| ... STATIC mp_obj_t espnow_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_message, ARG_mac, ARG_sync }; static const mp_arg_t allowed_args[] = { { MP_QSTR_message, MP_ARG_OBJ | MP_ARG_REQUIRED }, { MP_QSTR_mac, MP_ARG_OBJ, { .u_obj = mp_const_none } }, { MP_QSTR_sync, MP_ARG_BOOL, { .u_bool = mp_const_true } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); espnow_obj_t *self = pos_args[0]; check_for_deinit(self); const bool sync = mp_obj_is_true(args[ARG_sync].u_obj); const uint8_t *peer_addr = _get_peer_addr(args[ARG_mac].u_obj); // Get a pointer to the data buffer of the message mp_buffer_info_t message; mp_get_buffer_raise(args[ARG_message].u_obj, &message, MP_BUFFER_READ); return common_hal_espnow_send(self, sync, peer_addr, &message); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_send_obj, 2, espnow_send); //| def recv(self) -> Optional[ESPNowPacket]: //| """Receive a message from the peer(s). //| //| :returns: An `ESPNowPacket` if available in the buffer, otherwise `None`.""" //| ... STATIC mp_obj_t espnow_recv(mp_obj_t self_in, mp_obj_t buffers) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return common_hal_espnow_recv(self); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_recv_obj, espnow_recv); // --- Peer Management Functions --- // Common code for add_peer() and mod_peer() to process the args. static void _update_peer_info(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, bool modify) { enum { ARG_mac, ARG_lmk, ARG_channel, ARG_interface, ARG_encrypt }; static const mp_arg_t allowed_args[] = { { MP_QSTR_mac, MP_ARG_OBJ | MP_ARG_REQUIRED }, { MP_QSTR_lmk, MP_ARG_OBJ, { .u_obj = mp_const_none } }, { MP_QSTR_channel, MP_ARG_INT, { .u_obj = mp_const_none } }, { MP_QSTR_interface,MP_ARG_INT, { .u_obj = mp_const_none } }, { MP_QSTR_encrypt, MP_ARG_BOOL,{ .u_obj = mp_const_none } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); esp_now_peer_info_t peer = {0}; memcpy(peer.peer_addr, _get_peer_addr(args[ARG_mac].u_obj), ESP_NOW_ETH_ALEN); if (modify) { if (esp_now_get_peer(peer.peer_addr, &peer) != ESP_OK) { mp_raise_RuntimeError(translate("peer not found")); } } else { if (esp_now_is_peer_exist(peer.peer_addr)) { mp_raise_RuntimeError(translate("peer already exists")); } peer.channel = 0; peer.ifidx = WIFI_IF_STA; peer.encrypt = false; } const mp_obj_t channel = args[ARG_channel].u_obj; if (channel != mp_const_none) { peer.channel = mp_arg_validate_int_range(mp_obj_get_int(channel), 0, 14, MP_QSTR_channel); } const mp_obj_t interface = args[ARG_interface].u_obj; if (interface != mp_const_none) { peer.ifidx = (wifi_interface_t)mp_arg_validate_int_range(mp_obj_get_int(interface), 0, 1, MP_QSTR_interface); } const mp_obj_t encrypt = args[ARG_encrypt].u_obj; if (encrypt != mp_const_none) { peer.encrypt = mp_obj_is_true(encrypt); } const mp_obj_t lmk = args[ARG_lmk].u_obj; if (lmk != mp_const_none) { memcpy(peer.lmk, _get_bytes_len(lmk, ESP_NOW_KEY_LEN, MP_BUFFER_READ), ESP_NOW_KEY_LEN); } else if (peer.encrypt) { mp_raise_ValueError_varg(translate("%q is %q"), MP_QSTR_lmk, MP_QSTR_None); } check_esp_err((modify) ? esp_now_mod_peer(&peer) : esp_now_add_peer(&peer)); } // Update the cached peer count in self->peers_count; // The peers_count ignores broadcast and multicast addresses and is used for the // send() logic and is updated from add_peer(), mod_peer() and del_peer(). static void _update_peer_count(espnow_obj_t *self) { esp_now_peer_info_t peer = {0}; bool from_head = true; int count = 0; // esp_now_fetch_peer() skips over any broadcast or multicast addresses while (esp_now_fetch_peer(from_head, &peer) == ESP_OK) { from_head = false; if (++count >= ESP_NOW_MAX_TOTAL_PEER_NUM) { break; // Should not happen } } self->peers_count = count; } //| def add_peer( //| self, //| mac: ReadableBuffer, //| lmk: Optional[ReadableBuffer], //| channel: int = 0, //| interface: int = 0, //| encrypt: bool = False, //| ) -> None: //| """Add peer. //| //| :param ReadableBuffer mac: The mac address of the peer. //| :param ReadableBuffer lmk: The Local Master Key (lmk) of the peer. //| :param int channel: The peer's channel. Default: 0 ie. use the current channel. //| :param int interface: The WiFi interface to use. Default: 0 ie. STA. //| :param bool encrypt: Whether or not to use encryption.""" //| ... STATIC mp_obj_t espnow_add_peer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { espnow_obj_t *self = pos_args[0]; check_for_deinit(self); _update_peer_info(n_args, pos_args, kw_args, false); _update_peer_count(self); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_add_peer_obj, 2, espnow_add_peer); //| def mod_peer( //| self, //| mac: ReadableBuffer, //| lmk: Optional[ReadableBuffer], //| channel: int = 0, //| interface: int = 0, //| encrypt: bool = False, //| ) -> None: //| """Modify peer. //| //| :param ReadableBuffer mac: The mac address of the peer. //| :param ReadableBuffer lmk: The Local Master Key (lmk) of the peer. //| :param int channel: The peer's channel. Default: 0 ie. use the current channel. //| :param int interface: The WiFi interface to use. Default: 0 ie. STA. //| :param bool encrypt: Whether or not to use encryption.""" //| ... STATIC mp_obj_t espnow_mod_peer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { espnow_obj_t *self = pos_args[0]; check_for_deinit(self); _update_peer_info(n_args, pos_args, kw_args, true); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_mod_peer_obj, 2, espnow_mod_peer); //| def del_peer(self, mac: ReadableBuffer) -> None: //| """Delete peer. //| //| :param ReadableBuffer mac: The mac address of the peer.""" //| ... STATIC mp_obj_t espnow_del_peer(mp_obj_t self_in, mp_obj_t mac) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); uint8_t peer_addr[ESP_NOW_ETH_ALEN]; memcpy(peer_addr, _get_peer_addr(mac), ESP_NOW_ETH_ALEN); check_esp_err(esp_now_del_peer(peer_addr)); _update_peer_count(self); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_del_peer_obj, espnow_del_peer); // Convert a peer_info struct to python tuple // Used by espnow_get_peer() and espnow_get_peers() static mp_obj_t _peer_info_to_tuple(const esp_now_peer_info_t *peer) { return MP_OBJ_NEW_TUPLE( mp_obj_new_bytes(peer->peer_addr, MP_ARRAY_SIZE(peer->peer_addr)), mp_obj_new_bytes(peer->lmk, MP_ARRAY_SIZE(peer->lmk)), mp_obj_new_int(peer->channel), mp_obj_new_int(peer->ifidx), mp_obj_new_bool(peer->encrypt)); } //| def get_peer(self, mac: ReadableBuffer) -> Tuple[bytes, int, int, bool]: //| """Get the peer info for mac as a `tuple`. //| //| :param ReadableBuffer mac: The mac address of the peer. //| //| :returns: A `tuple` of (mac, lmk, channel, interface, encrypt).""" //| ... STATIC mp_obj_t espnow_get_peer(mp_obj_t self_in, mp_obj_t mac) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); esp_now_peer_info_t peer = {0}; memcpy(peer.peer_addr, _get_peer_addr(mac), ESP_NOW_ETH_ALEN); check_esp_err(esp_now_get_peer(peer.peer_addr, &peer)); return _peer_info_to_tuple(&peer); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_get_peer_obj, espnow_get_peer); // --- Peer Related Properties --- //| peers: Tuple[Tuple[bytes, bytes, int, int, bool], ...] //| """The peer info records for all registered `ESPNow` peers. (read-only) //| //| A `tuple` of tuples: ((mac, lmk, channel, interface, encrypt), ...).""" //| STATIC mp_obj_t espnow_get_peers(mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); // Build and initialize the peer info tuple. mp_obj_tuple_t *peerinfo_tuple = mp_obj_new_tuple(self->peers_count, NULL); esp_now_peer_info_t peer = {0}; for (size_t i = 0; i < peerinfo_tuple->len; i++) { esp_err_t status = esp_now_fetch_peer((i == 0), &peer); peerinfo_tuple->items[i] = (status == ESP_OK ? _peer_info_to_tuple(&peer) : mp_const_none); } return peerinfo_tuple; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_obj, espnow_get_peers); MP_PROPERTY_GETTER(espnow_peers_obj, (mp_obj_t)&espnow_get_peers_obj); //| peers_count: Tuple[int, int] //| """The number of registered peers in a `tuple` of (num_total_peers, num_encrypted_peers). (read-only)""" //| STATIC mp_obj_t espnow_get_peers_count(mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); esp_now_peer_num_t peer_num = {0}; check_esp_err(esp_now_get_peer_num(&peer_num)); return MP_OBJ_NEW_TUPLE( mp_obj_new_int(peer_num.total_num), mp_obj_new_int(peer_num.encrypt_num)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_count_obj, espnow_get_peers_count); MP_PROPERTY_GETTER(espnow_peers_count_obj, (mp_obj_t)&espnow_get_peers_count_obj); //| peers_table: Dict[bytes, List[int]] //| """The dictionary of peers we have seen. (read-only) //| //| A `dict` of {peer: [rssi, time], ...} //| //| where: //| peer is a byte string containing the 6-byte mac address of the peer. //| rssi is the wifi signal strength from the last msg received (in dBm from -127 to 0). //| time is the time in milliseconds since device last booted.""" //| STATIC mp_obj_t espnow_get_peers_table(mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return self->peers_table; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_table_obj, espnow_get_peers_table); MP_PROPERTY_GETTER(espnow_peers_table_obj, (mp_obj_t)&espnow_get_peers_table_obj); STATIC const mp_rom_map_elem_t espnow_locals_dict_table[] = { // Config parameters { MP_ROM_QSTR(MP_QSTR_set_pmk), MP_ROM_PTR(&espnow_set_pmk_obj) }, { MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&espnow_active_obj) }, { MP_ROM_QSTR(MP_QSTR_buffer_size), MP_ROM_PTR(&espnow_buffer_size_obj) }, { MP_ROM_QSTR(MP_QSTR_phy_rate), MP_ROM_PTR(&espnow_phy_rate_obj) }, { MP_ROM_QSTR(MP_QSTR_stats), MP_ROM_PTR(&espnow_stats_obj) }, // Send and receive messages { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&espnow_send_obj) }, { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&espnow_recv_obj) }, // Peer management functions { MP_ROM_QSTR(MP_QSTR_add_peer), MP_ROM_PTR(&espnow_add_peer_obj) }, { MP_ROM_QSTR(MP_QSTR_mod_peer), MP_ROM_PTR(&espnow_mod_peer_obj) }, { MP_ROM_QSTR(MP_QSTR_del_peer), MP_ROM_PTR(&espnow_del_peer_obj) }, { MP_ROM_QSTR(MP_QSTR_get_peer), MP_ROM_PTR(&espnow_get_peer_obj) }, // Peer related properties { MP_ROM_QSTR(MP_QSTR_peers), MP_ROM_PTR(&espnow_peers_obj) }, { MP_ROM_QSTR(MP_QSTR_peers_count), MP_ROM_PTR(&espnow_peers_count_obj) }, { MP_ROM_QSTR(MP_QSTR_peers_table), MP_ROM_PTR(&espnow_peers_table_obj) }, }; STATIC MP_DEFINE_CONST_DICT(espnow_locals_dict, espnow_locals_dict_table); // --- Dummy Buffer Protocol support --- // ...so asyncio can poll.ipoll() on this device // Support ioctl(MP_STREAM_POLL, ) for asyncio STATIC mp_uint_t espnow_stream_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { if (request != MP_STREAM_POLL) { *errcode = MP_EINVAL; return MP_STREAM_ERROR; } espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return (common_hal_espnow_deinited(self)) ? 0 : // If not initialized arg ^ ( // If no data in the buffer, unset the Read ready flag ((!ringbuf_num_filled(self->recv_buffer)) ? MP_STREAM_POLL_RD : 0) | // If still waiting for responses, unset the Write ready flag ((self->tx_responses < self->tx_packets) ? MP_STREAM_POLL_WR : 0)); } STATIC const mp_stream_p_t espnow_stream_p = { .ioctl = espnow_stream_ioctl, }; //| def __bool__(self) -> bool: //| """``True`` if `len()` is greater than zero. //| This is an easy way to check if the buffer is empty. //| """ //| ... //| def __len__(self) -> int: //| """Return the number of `bytes` available to read. Used to implement ``len()``.""" //| ... STATIC mp_obj_t espnow_unary_op(mp_unary_op_t op, mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); size_t len = ringbuf_num_filled(self->recv_buffer); switch (op) { case MP_UNARY_OP_BOOL: return mp_obj_new_bool(len != 0); case MP_UNARY_OP_LEN: return mp_obj_new_int_from_uint(len); default: return MP_OBJ_NULL; // op not supported } } const mp_obj_type_t espnow_type = { { &mp_type_type }, .name = MP_QSTR_ESPNow, .make_new = espnow_make_new, .locals_dict = (mp_obj_t)&espnow_locals_dict, .flags = MP_TYPE_FLAG_EXTENDED, MP_TYPE_EXTENDED_FIELDS( .protocol = &espnow_stream_p, .unary_op = &espnow_unary_op ), };