2117 lines
68 KiB
C
2117 lines
68 KiB
C
// in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args
|
|
// py_xxx functions are safer and can be called by anyone
|
|
// note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "nlr.h"
|
|
#include "misc.h"
|
|
#include "mpyconfig.h"
|
|
#include "runtime.h"
|
|
#include "bc.h"
|
|
|
|
#if 0 // print debugging info
|
|
#define DEBUG_PRINT (1)
|
|
#define WRITE_NATIVE (1)
|
|
#define DEBUG_printf(args...) printf(args)
|
|
#define DEBUG_OP_printf(args...) printf(args)
|
|
#else // don't print debugging info
|
|
#define DEBUG_printf(args...) (void)0
|
|
#define DEBUG_OP_printf(args...) (void)0
|
|
#endif
|
|
|
|
typedef machine_int_t py_small_int_t;
|
|
|
|
#define IS_O(o, k) (((((py_small_int_t)(o)) & 1) == 0) && (((py_obj_base_t*)(o))->kind == (k)))
|
|
#define IS_SMALL_INT(o) (((py_small_int_t)(o)) & 1)
|
|
#define FROM_SMALL_INT(o) (((py_small_int_t)(o)) >> 1)
|
|
#define TO_SMALL_INT(o) ((py_obj_t)(((o) << 1) | 1))
|
|
|
|
#if MICROPY_ENABLE_FLOAT
|
|
typedef machine_float_t py_float_t;
|
|
#endif
|
|
|
|
typedef enum {
|
|
O_CONST,
|
|
O_STR,
|
|
#if MICROPY_ENABLE_FLOAT
|
|
O_FLOAT,
|
|
O_COMPLEX,
|
|
#endif
|
|
O_EXCEPTION_0,
|
|
O_EXCEPTION_N,
|
|
O_RANGE,
|
|
O_RANGE_IT,
|
|
O_FUN_0,
|
|
O_FUN_1,
|
|
O_FUN_2,
|
|
O_FUN_N,
|
|
O_FUN_VAR,
|
|
O_FUN_BC,
|
|
O_FUN_ASM,
|
|
O_GEN_WRAP,
|
|
O_GEN_INSTANCE,
|
|
O_BOUND_METH,
|
|
O_TUPLE,
|
|
O_LIST,
|
|
O_TUPLE_IT,
|
|
O_LIST_IT,
|
|
O_SET,
|
|
O_MAP,
|
|
O_CLASS,
|
|
O_OBJ,
|
|
O_USER,
|
|
} py_obj_kind_t;
|
|
|
|
typedef enum {
|
|
MAP_QSTR,
|
|
MAP_PY_OBJ,
|
|
} py_map_kind_t;
|
|
|
|
typedef struct _py_map_elem_t {
|
|
py_obj_t key;
|
|
py_obj_t value;
|
|
} py_map_elem_t;
|
|
|
|
typedef struct _py_map_t {
|
|
struct {
|
|
py_map_kind_t kind : 1;
|
|
machine_uint_t used : (8 * BYTES_PER_WORD - 1);
|
|
};
|
|
machine_uint_t alloc;
|
|
py_map_elem_t *table;
|
|
} py_map_t;
|
|
|
|
typedef struct _py_obj_base_t py_obj_base_t;
|
|
|
|
struct _py_obj_base_t {
|
|
py_obj_kind_t kind;
|
|
union {
|
|
const char *id;
|
|
qstr u_str;
|
|
#if MICROPY_ENABLE_FLOAT
|
|
py_float_t u_float; // for O_FLOAT
|
|
struct { // for O_COMPLEX
|
|
py_float_t real;
|
|
py_float_t imag;
|
|
} u_complex;
|
|
#endif
|
|
struct { // for O_EXCEPTION_0
|
|
qstr id;
|
|
} u_exc0;
|
|
struct { // for O_EXCEPTION_N
|
|
// TODO make generic object or something
|
|
qstr id;
|
|
int n_args;
|
|
const void **args;
|
|
} u_exc_n;
|
|
struct { // for O_RANGE
|
|
// TODO make generic object or something
|
|
machine_int_t start;
|
|
machine_int_t stop;
|
|
machine_int_t step;
|
|
} u_range;
|
|
struct { // for O_RANGE_IT
|
|
// TODO make generic object or something
|
|
machine_int_t cur;
|
|
machine_int_t stop;
|
|
machine_int_t step;
|
|
} u_range_it;
|
|
struct { // for O_FUN_[012N], O_FUN_VAR
|
|
int n_args;
|
|
void *fun;
|
|
} u_fun;
|
|
struct { // for O_FUN_BC
|
|
int n_args;
|
|
uint n_state;
|
|
byte *code;
|
|
} u_fun_bc;
|
|
struct { // for O_FUN_ASM
|
|
int n_args;
|
|
void *fun;
|
|
} u_fun_asm;
|
|
struct { // for O_GEN_WRAP
|
|
int n_state;
|
|
py_obj_base_t *fun;
|
|
} u_gen_wrap;
|
|
struct { // for O_GEN_INSTANCE
|
|
py_obj_t *state;
|
|
const byte *ip;
|
|
py_obj_t *sp;
|
|
} u_gen_instance;
|
|
struct { // for O_BOUND_METH
|
|
py_obj_t meth;
|
|
py_obj_t self;
|
|
} u_bound_meth;
|
|
struct { // for O_TUPLE, O_LIST
|
|
machine_uint_t alloc;
|
|
machine_uint_t len;
|
|
py_obj_t *items;
|
|
} u_tuple_list;
|
|
struct { // for O_TUPLE_IT, O_LIST_IT
|
|
py_obj_base_t *obj;
|
|
machine_uint_t cur;
|
|
} u_tuple_list_it;
|
|
struct { // for O_SET
|
|
machine_uint_t alloc;
|
|
machine_uint_t used;
|
|
py_obj_t *table;
|
|
} u_set;
|
|
py_map_t u_map; // for O_MAP
|
|
struct { // for O_CLASS
|
|
py_map_t *locals;
|
|
} u_class;
|
|
struct { // for O_OBJ
|
|
py_obj_base_t *class; // points to a O_CLASS object
|
|
py_map_t *members;
|
|
} u_obj;
|
|
struct { // for O_USER
|
|
const py_user_info_t *info;
|
|
machine_uint_t data1;
|
|
machine_uint_t data2;
|
|
} u_user;
|
|
};
|
|
};
|
|
|
|
static qstr q_append;
|
|
static qstr q_join;
|
|
static qstr q_format;
|
|
static qstr q___build_class__;
|
|
static qstr q___next__;
|
|
static qstr q_AttributeError;
|
|
static qstr q_IndexError;
|
|
static qstr q_KeyError;
|
|
static qstr q_NameError;
|
|
static qstr q_TypeError;
|
|
static qstr q_SyntaxError;
|
|
|
|
py_obj_t py_const_none;
|
|
py_obj_t py_const_false;
|
|
py_obj_t py_const_true;
|
|
py_obj_t py_const_stop_iteration;
|
|
|
|
// locals and globals need to be pointers because they can be the same in outer module scope
|
|
static py_map_t *map_locals;
|
|
static py_map_t *map_globals;
|
|
static py_map_t map_builtins;
|
|
|
|
// approximatelly doubling primes; made with Mathematica command: Table[Prime[Floor[(1.7)^n]], {n, 3, 24}]
|
|
static int doubling_primes[] = {7, 19, 43, 89, 179, 347, 647, 1229, 2297, 4243, 7829, 14347, 26017, 47149, 84947, 152443, 273253, 488399, 869927, 1547173, 2745121, 4861607};
|
|
|
|
int get_doubling_prime_greater_or_equal_to(int x) {
|
|
for (int i = 0; i < sizeof(doubling_primes) / sizeof(int); i++) {
|
|
if (doubling_primes[i] >= x) {
|
|
return doubling_primes[i];
|
|
}
|
|
}
|
|
// ran out of primes in the table!
|
|
// return something sensible, at least make it odd
|
|
return x | 1;
|
|
}
|
|
|
|
void py_map_init(py_map_t *map, py_map_kind_t kind, int n) {
|
|
map->kind = kind;
|
|
map->used = 0;
|
|
map->alloc = get_doubling_prime_greater_or_equal_to(n + 1);
|
|
map->table = m_new0(py_map_elem_t, map->alloc);
|
|
}
|
|
|
|
py_map_t *py_map_new(py_map_kind_t kind, int n) {
|
|
py_map_t *map = m_new(py_map_t, 1);
|
|
py_map_init(map, kind, n);
|
|
return map;
|
|
}
|
|
|
|
machine_int_t py_obj_hash(py_obj_t o_in) {
|
|
if (o_in == py_const_false) {
|
|
return 0; // needs to hash to same as the integer 0, since False==0
|
|
} else if (o_in == py_const_true) {
|
|
return 1; // needs to hash to same as the integer 1, since True==1
|
|
} else if (IS_SMALL_INT(o_in)) {
|
|
return FROM_SMALL_INT(o_in);
|
|
} else if (IS_O(o_in, O_CONST)) {
|
|
return (machine_int_t)o_in;
|
|
} else if (IS_O(o_in, O_STR)) {
|
|
return ((py_obj_base_t*)o_in)->u_str;
|
|
} else {
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// this function implements the '==' operator (and so the inverse of '!=')
|
|
// from the python language reference:
|
|
// "The objects need not have the same type. If both are numbers, they are converted
|
|
// to a common type. Otherwise, the == and != operators always consider objects of
|
|
// different types to be unequal."
|
|
// note also that False==0 and True==1 are true expressions
|
|
bool py_obj_equal(py_obj_t o1, py_obj_t o2) {
|
|
if (o1 == o2) {
|
|
return true;
|
|
} else if (IS_SMALL_INT(o1) || IS_SMALL_INT(o2)) {
|
|
if (IS_SMALL_INT(o1) && IS_SMALL_INT(o2)) {
|
|
return false;
|
|
} else {
|
|
if (IS_SMALL_INT(o2)) {
|
|
py_obj_t temp = o1; o1 = o2; o2 = temp;
|
|
}
|
|
// o1 is the SMALL_INT, o2 is not
|
|
py_small_int_t val = FROM_SMALL_INT(o1);
|
|
if (o2 == py_const_false) {
|
|
return val == 0;
|
|
} else if (o2 == py_const_true) {
|
|
return val == 1;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
} else if (IS_O(o1, O_STR) && IS_O(o2, O_STR)) {
|
|
return ((py_obj_base_t*)o1)->u_str == ((py_obj_base_t*)o2)->u_str;
|
|
} else {
|
|
assert(0);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
py_map_elem_t* py_map_lookup_helper(py_map_t *map, py_obj_t index, bool add_if_not_found) {
|
|
bool is_map_py_obj = (map->kind == MAP_PY_OBJ);
|
|
machine_uint_t hash;
|
|
if (is_map_py_obj) {
|
|
hash = py_obj_hash(index);
|
|
} else {
|
|
hash = (machine_uint_t)index;
|
|
}
|
|
uint pos = hash % map->alloc;
|
|
for (;;) {
|
|
py_map_elem_t *elem = &map->table[pos];
|
|
if (elem->key == NULL) {
|
|
// not in table
|
|
if (add_if_not_found) {
|
|
if (map->used + 1 >= map->alloc) {
|
|
// not enough room in table, rehash it
|
|
int old_alloc = map->alloc;
|
|
py_map_elem_t *old_table = map->table;
|
|
map->alloc = get_doubling_prime_greater_or_equal_to(map->alloc + 1);
|
|
map->used = 0;
|
|
map->table = m_new0(py_map_elem_t, map->alloc);
|
|
for (int i = 0; i < old_alloc; i++) {
|
|
if (old_table[i].key != NULL) {
|
|
py_map_lookup_helper(map, old_table[i].key, true)->value = old_table[i].value;
|
|
}
|
|
}
|
|
m_free(old_table);
|
|
// restart the search for the new element
|
|
pos = hash % map->alloc;
|
|
} else {
|
|
map->used += 1;
|
|
elem->key = index;
|
|
return elem;
|
|
}
|
|
} else {
|
|
return NULL;
|
|
}
|
|
} else if (elem->key == index || (is_map_py_obj && py_obj_equal(elem->key, index))) {
|
|
// found it
|
|
/* it seems CPython does not replace the index; try x={True:'true'};x[1]='one';x
|
|
if (add_if_not_found) {
|
|
elem->key = index;
|
|
}
|
|
*/
|
|
return elem;
|
|
} else {
|
|
// not yet found, keep searching in this table
|
|
pos = (pos + 1) % map->alloc;
|
|
}
|
|
}
|
|
}
|
|
|
|
py_map_elem_t* py_qstr_map_lookup(py_map_t *map, qstr index, bool add_if_not_found) {
|
|
py_obj_t o = (py_obj_t)(machine_uint_t)index;
|
|
return py_map_lookup_helper(map, o, add_if_not_found);
|
|
}
|
|
|
|
py_map_elem_t* py_map_lookup(py_obj_t o, py_obj_t index, bool add_if_not_found) {
|
|
assert(IS_O(o, O_MAP));
|
|
return py_map_lookup_helper(&((py_obj_base_t *)o)->u_map, index, add_if_not_found);
|
|
}
|
|
|
|
static bool fit_small_int(py_small_int_t o) {
|
|
return true;
|
|
}
|
|
|
|
py_obj_t py_obj_new_int(machine_int_t value) {
|
|
return TO_SMALL_INT(value);
|
|
}
|
|
|
|
py_obj_t py_obj_new_const(const char *id) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_CONST;
|
|
o->id = id;
|
|
return (py_obj_t)o;
|
|
}
|
|
|
|
py_obj_t py_obj_new_str(qstr qstr) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_STR;
|
|
o->u_str = qstr;
|
|
return (py_obj_t)o;
|
|
}
|
|
|
|
#if MICROPY_ENABLE_FLOAT
|
|
py_obj_t py_obj_new_float(py_float_t val) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_FLOAT;
|
|
o->u_float = val;
|
|
return (py_obj_t)o;
|
|
}
|
|
|
|
py_obj_t py_obj_new_complex(py_float_t real, py_float_t imag) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_COMPLEX;
|
|
o->u_complex.real = real;
|
|
o->u_complex.imag = imag;
|
|
return (py_obj_t)o;
|
|
}
|
|
#endif
|
|
|
|
py_obj_t py_obj_new_exception_0(qstr id) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_EXCEPTION_0;
|
|
o->u_exc0.id = id;
|
|
return (py_obj_t)o;
|
|
}
|
|
|
|
py_obj_t py_obj_new_exception_2(qstr id, const char *fmt, const char *s1, const char *s2) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_EXCEPTION_N;
|
|
o->u_exc_n.id = id;
|
|
o->u_exc_n.n_args = 3;
|
|
o->u_exc_n.args = m_new(const void*, 3);
|
|
o->u_exc_n.args[0] = fmt;
|
|
o->u_exc_n.args[1] = s1;
|
|
o->u_exc_n.args[2] = s2;
|
|
return (py_obj_t)o;
|
|
}
|
|
|
|
// range is a class and instances are immutable sequence objects
|
|
py_obj_t py_obj_new_range(int start, int stop, int step) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_RANGE;
|
|
o->u_range.start = start;
|
|
o->u_range.stop = stop;
|
|
o->u_range.step = step;
|
|
return o;
|
|
}
|
|
|
|
py_obj_t py_obj_new_range_iterator(int cur, int stop, int step) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_RANGE_IT;
|
|
o->u_range_it.cur = cur;
|
|
o->u_range_it.stop = stop;
|
|
o->u_range_it.step = step;
|
|
return o;
|
|
}
|
|
|
|
py_obj_t py_obj_new_tuple_iterator(py_obj_base_t *tuple, int cur) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_TUPLE_IT;
|
|
o->u_tuple_list_it.obj = tuple;
|
|
o->u_tuple_list_it.cur = cur;
|
|
return o;
|
|
}
|
|
|
|
py_obj_t py_obj_new_list_iterator(py_obj_base_t *list, int cur) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_LIST_IT;
|
|
o->u_tuple_list_it.obj = list;
|
|
o->u_tuple_list_it.cur = cur;
|
|
return o;
|
|
}
|
|
|
|
py_obj_t py_obj_new_user(const py_user_info_t *info, machine_uint_t data1, machine_uint_t data2) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_USER;
|
|
// TODO should probably parse the info to turn strings to qstr's, and wrap functions in O_FUN_N objects
|
|
// that'll take up some memory. maybe we can lazily do the O_FUN_N: leave it a ptr to a C function, and
|
|
// only when the method is looked-up do we change that to the O_FUN_N object.
|
|
o->u_user.info = info;
|
|
o->u_user.data1 = data1;
|
|
o->u_user.data2 = data2;
|
|
return o;
|
|
}
|
|
|
|
const char *py_obj_get_type_str(py_obj_t o_in) {
|
|
if (IS_SMALL_INT(o_in)) {
|
|
return "int";
|
|
} else {
|
|
py_obj_base_t *o = o_in;
|
|
switch (o->kind) {
|
|
case O_CONST:
|
|
if (o == py_const_none) {
|
|
return "NoneType";
|
|
} else {
|
|
return "bool";
|
|
}
|
|
case O_STR:
|
|
return "str";
|
|
#if MICROPY_ENABLE_FLOAT
|
|
case O_FLOAT:
|
|
return "float";
|
|
#endif
|
|
case O_FUN_0:
|
|
case O_FUN_1:
|
|
case O_FUN_2:
|
|
case O_FUN_N:
|
|
case O_FUN_VAR:
|
|
case O_FUN_BC:
|
|
return "function";
|
|
case O_GEN_INSTANCE:
|
|
return "generator";
|
|
case O_TUPLE:
|
|
return "tuple";
|
|
case O_LIST:
|
|
return "list";
|
|
case O_TUPLE_IT:
|
|
return "tuple_iterator";
|
|
case O_LIST_IT:
|
|
return "list_iterator";
|
|
case O_SET:
|
|
return "set";
|
|
case O_MAP:
|
|
return "dict";
|
|
case O_OBJ:
|
|
{
|
|
py_map_elem_t *qn = py_qstr_map_lookup(o->u_obj.class->u_class.locals, qstr_from_str_static("__qualname__"), false);
|
|
assert(qn != NULL);
|
|
assert(IS_O(qn->value, O_STR));
|
|
return qstr_str(((py_obj_base_t*)qn->value)->u_str);
|
|
}
|
|
case O_USER:
|
|
return o->u_user.info->type_name;
|
|
default:
|
|
assert(0);
|
|
return "UnknownType";
|
|
}
|
|
}
|
|
}
|
|
|
|
int rt_is_true(py_obj_t arg) {
|
|
DEBUG_OP_printf("is true %p\n", arg);
|
|
if (IS_SMALL_INT(arg)) {
|
|
if (FROM_SMALL_INT(arg) == 0) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
} else if (arg == py_const_none) {
|
|
return 0;
|
|
} else if (arg == py_const_false) {
|
|
return 0;
|
|
} else if (arg == py_const_true) {
|
|
return 1;
|
|
} else {
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
machine_int_t py_obj_get_int(py_obj_t arg) {
|
|
if (arg == py_const_false) {
|
|
return 0;
|
|
} else if (arg == py_const_true) {
|
|
return 1;
|
|
} else if (IS_SMALL_INT(arg)) {
|
|
return FROM_SMALL_INT(arg);
|
|
} else {
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#if MICROPY_ENABLE_FLOAT
|
|
machine_float_t py_obj_get_float(py_obj_t arg) {
|
|
if (arg == py_const_false) {
|
|
return 0;
|
|
} else if (arg == py_const_true) {
|
|
return 1;
|
|
} else if (IS_SMALL_INT(arg)) {
|
|
return FROM_SMALL_INT(arg);
|
|
} else if (IS_O(arg, O_FLOAT)) {
|
|
return ((py_obj_base_t*)arg)->u_float;
|
|
} else {
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void py_obj_get_complex(py_obj_t arg, py_float_t *real, py_float_t *imag) {
|
|
if (arg == py_const_false) {
|
|
*real = 0;
|
|
*imag = 0;
|
|
} else if (arg == py_const_true) {
|
|
*real = 1;
|
|
*imag = 0;
|
|
} else if (IS_SMALL_INT(arg)) {
|
|
*real = FROM_SMALL_INT(arg);
|
|
*imag = 0;
|
|
} else if (IS_O(arg, O_FLOAT)) {
|
|
*real = ((py_obj_base_t*)arg)->u_float;
|
|
*imag = 0;
|
|
} else if (IS_O(arg, O_COMPLEX)) {
|
|
*real = ((py_obj_base_t*)arg)->u_complex.real;
|
|
*imag = ((py_obj_base_t*)arg)->u_complex.imag;
|
|
} else {
|
|
assert(0);
|
|
*real = 0;
|
|
*imag = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
qstr py_obj_get_qstr(py_obj_t arg) {
|
|
if (IS_O(arg, O_STR)) {
|
|
return ((py_obj_base_t*)arg)->u_str;
|
|
} else {
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
py_obj_t *py_obj_get_array_fixed_n(py_obj_t o_in, machine_int_t n) {
|
|
if (IS_O(o_in, O_TUPLE) || IS_O(o_in, O_LIST)) {
|
|
py_obj_base_t *o = o_in;
|
|
if (o->u_tuple_list.len != n) {
|
|
nlr_jump(py_obj_new_exception_2(q_IndexError, "requested length %d but object has length %d", (void*)n, (void*)o->u_tuple_list.len));
|
|
}
|
|
return o->u_tuple_list.items;
|
|
} else {
|
|
nlr_jump(py_obj_new_exception_2(q_TypeError, "object '%s' is not a tuple or list", py_obj_get_type_str(o_in), NULL));
|
|
}
|
|
}
|
|
|
|
void py_user_get_data(py_obj_t o, machine_uint_t *data1, machine_uint_t *data2) {
|
|
assert(IS_O(o, O_USER));
|
|
if (data1 != NULL) {
|
|
*data1 = ((py_obj_base_t*)o)->u_user.data1;
|
|
}
|
|
if (data2 != NULL) {
|
|
*data2 = ((py_obj_base_t*)o)->u_user.data2;
|
|
}
|
|
}
|
|
|
|
void py_user_set_data(py_obj_t o, machine_uint_t data1, machine_uint_t data2) {
|
|
assert(IS_O(o, O_USER));
|
|
((py_obj_base_t*)o)->u_user.data1 = data1;
|
|
((py_obj_base_t*)o)->u_user.data2 = data2;
|
|
}
|
|
|
|
void printf_wrapper(void *env, const char *fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
vprintf(fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
void vstr_printf_wrapper(void *env, const char *fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
vstr_vprintf(env, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
void py_obj_print_helper(void (*print)(void *env, const char *fmt, ...), void *env, py_obj_t o_in) {
|
|
if (IS_SMALL_INT(o_in)) {
|
|
print(env, "%d", (int)FROM_SMALL_INT(o_in));
|
|
} else {
|
|
py_obj_base_t *o = o_in;
|
|
switch (o->kind) {
|
|
case O_CONST:
|
|
print(env, "%s", o->id);
|
|
break;
|
|
case O_STR:
|
|
// TODO need to escape chars etc
|
|
print(env, "'%s'", qstr_str(o->u_str));
|
|
break;
|
|
#if MICROPY_ENABLE_FLOAT
|
|
case O_FLOAT:
|
|
print(env, "%.8g", o->u_float);
|
|
break;
|
|
case O_COMPLEX:
|
|
if (o->u_complex.real == 0) {
|
|
print(env, "%.8gj", o->u_complex.imag);
|
|
} else {
|
|
print(env, "(%.8g+%.8gj)", o->u_complex.real, o->u_complex.imag);
|
|
}
|
|
break;
|
|
#endif
|
|
case O_EXCEPTION_0:
|
|
print(env, "%s", qstr_str(o->u_exc0.id));
|
|
break;
|
|
case O_EXCEPTION_N:
|
|
print(env, "%s: ", qstr_str(o->u_exc_n.id));
|
|
print(env, o->u_exc_n.args[0], o->u_exc_n.args[1], o->u_exc_n.args[2]);
|
|
break;
|
|
case O_GEN_INSTANCE:
|
|
print(env, "<generator object 'fun-name' at %p>", o);
|
|
break;
|
|
case O_TUPLE:
|
|
print(env, "(");
|
|
for (int i = 0; i < o->u_tuple_list.len; i++) {
|
|
if (i > 0) {
|
|
print(env, ", ");
|
|
}
|
|
py_obj_print_helper(print, env, o->u_tuple_list.items[i]);
|
|
}
|
|
if (o->u_tuple_list.len == 1) {
|
|
print(env, ",");
|
|
}
|
|
print(env, ")");
|
|
break;
|
|
case O_LIST:
|
|
print(env, "[");
|
|
for (int i = 0; i < o->u_tuple_list.len; i++) {
|
|
if (i > 0) {
|
|
print(env, ", ");
|
|
}
|
|
py_obj_print_helper(print, env, o->u_tuple_list.items[i]);
|
|
}
|
|
print(env, "]");
|
|
break;
|
|
case O_SET:
|
|
{
|
|
bool first = true;
|
|
print(env, "{");
|
|
for (int i = 0; i < o->u_set.alloc; i++) {
|
|
if (o->u_set.table[i] != NULL) {
|
|
if (!first) {
|
|
print(env, ", ");
|
|
}
|
|
first = false;
|
|
py_obj_print_helper(print, env, o->u_set.table[i]);
|
|
}
|
|
}
|
|
print(env, "}");
|
|
break;
|
|
}
|
|
case O_MAP:
|
|
{
|
|
bool first = true;
|
|
print(env, "{");
|
|
for (int i = 0; i < o->u_map.alloc; i++) {
|
|
if (o->u_map.table[i].key != NULL) {
|
|
if (!first) {
|
|
print(env, ", ");
|
|
}
|
|
first = false;
|
|
py_obj_print_helper(print, env, o->u_map.table[i].key);
|
|
print(env, ": ");
|
|
py_obj_print_helper(print, env, o->u_map.table[i].value);
|
|
}
|
|
}
|
|
print(env, "}");
|
|
break;
|
|
}
|
|
case O_USER:
|
|
o->u_user.info->print(o_in);
|
|
break;
|
|
default:
|
|
print(env, "<? %d>", o->kind);
|
|
assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
py_obj_t rt_str_join(py_obj_t self_in, py_obj_t arg) {
|
|
assert(IS_O(self_in, O_STR));
|
|
py_obj_base_t *self = self_in;
|
|
int required_len = strlen(qstr_str(self->u_str));
|
|
|
|
// process arg, count required chars
|
|
if (!IS_O(arg, O_TUPLE) && !IS_O(arg, O_LIST)) {
|
|
goto bad_arg;
|
|
}
|
|
py_obj_base_t *tuple_list = arg;
|
|
for (int i = 0; i < tuple_list->u_tuple_list.len; i++) {
|
|
if (!IS_O(tuple_list->u_tuple_list.items[i], O_STR)) {
|
|
goto bad_arg;
|
|
}
|
|
required_len += strlen(qstr_str(((py_obj_base_t*)tuple_list->u_tuple_list.items[i])->u_str));
|
|
}
|
|
|
|
// make joined string
|
|
char *joined_str = m_new(char, required_len + 1);
|
|
joined_str[0] = 0;
|
|
for (int i = 0; i < tuple_list->u_tuple_list.len; i++) {
|
|
const char *s2 = qstr_str(((py_obj_base_t*)tuple_list->u_tuple_list.items[i])->u_str);
|
|
if (i > 0) {
|
|
strcat(joined_str, qstr_str(self->u_str));
|
|
}
|
|
strcat(joined_str, s2);
|
|
}
|
|
return py_obj_new_str(qstr_from_str_take(joined_str));
|
|
|
|
bad_arg:
|
|
nlr_jump(py_obj_new_exception_2(q_TypeError, "?str.join expecting a list of str's", NULL, NULL));
|
|
}
|
|
|
|
py_obj_t rt_str_format(int n_args, const py_obj_t* args) {
|
|
assert(IS_O(args[0], O_STR));
|
|
py_obj_base_t *self = args[0];
|
|
|
|
const char *str = qstr_str(self->u_str);
|
|
int arg_i = 1;
|
|
vstr_t *vstr = vstr_new();
|
|
for (; *str; str++) {
|
|
if (*str == '{') {
|
|
str++;
|
|
if (*str == '{') {
|
|
vstr_add_char(vstr, '{');
|
|
} else if (*str == '}') {
|
|
if (arg_i >= n_args) {
|
|
nlr_jump(py_obj_new_exception_2(q_IndexError, "tuple index out of range", NULL, NULL));
|
|
}
|
|
py_obj_print_helper(vstr_printf_wrapper, vstr, args[arg_i]);
|
|
arg_i++;
|
|
}
|
|
} else {
|
|
vstr_add_char(vstr, *str);
|
|
}
|
|
}
|
|
|
|
return py_obj_new_str(qstr_from_str_take(vstr->buf));
|
|
}
|
|
|
|
py_obj_t rt_list_append(py_obj_t self_in, py_obj_t arg) {
|
|
assert(IS_O(self_in, O_LIST));
|
|
py_obj_base_t *self = self_in;
|
|
if (self->u_tuple_list.len >= self->u_tuple_list.alloc) {
|
|
self->u_tuple_list.alloc *= 2;
|
|
self->u_tuple_list.items = m_renew(py_obj_t, self->u_tuple_list.items, self->u_tuple_list.alloc);
|
|
}
|
|
self->u_tuple_list.items[self->u_tuple_list.len++] = arg;
|
|
return py_const_none; // return None, as per CPython
|
|
}
|
|
|
|
py_obj_t rt_gen_instance_next(py_obj_t self_in) {
|
|
py_obj_t ret = rt_iternext(self_in);
|
|
if (ret == py_const_stop_iteration) {
|
|
nlr_jump(py_obj_new_exception_0(qstr_from_str_static("StopIteration")));
|
|
} else {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
typedef enum {
|
|
PY_CODE_NONE,
|
|
PY_CODE_BYTE,
|
|
PY_CODE_NATIVE,
|
|
PY_CODE_INLINE_ASM,
|
|
} py_code_kind_t;
|
|
|
|
typedef struct _py_code_t {
|
|
py_code_kind_t kind;
|
|
int n_args;
|
|
int n_locals;
|
|
int n_stack;
|
|
bool is_generator;
|
|
union {
|
|
struct {
|
|
byte *code;
|
|
uint len;
|
|
} u_byte;
|
|
struct {
|
|
py_fun_t fun;
|
|
} u_native;
|
|
struct {
|
|
void *fun;
|
|
} u_inline_asm;
|
|
};
|
|
} py_code_t;
|
|
|
|
static int next_unique_code_id;
|
|
static py_code_t *unique_codes;
|
|
|
|
py_obj_t fun_str_join;
|
|
py_obj_t fun_str_format;
|
|
py_obj_t fun_list_append;
|
|
py_obj_t fun_gen_instance_next;
|
|
|
|
py_obj_t py_builtin___repl_print__(py_obj_t o) {
|
|
if (o != py_const_none) {
|
|
py_obj_print(o);
|
|
printf("\n");
|
|
}
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t py_builtin_print(int n_args, const py_obj_t* args) {
|
|
for (int i = 0; i < n_args; i++) {
|
|
if (i > 0) {
|
|
printf(" ");
|
|
}
|
|
if (IS_O(args[i], O_STR)) {
|
|
// special case, print string raw
|
|
printf("%s", qstr_str(((py_obj_base_t*)args[i])->u_str));
|
|
} else {
|
|
// print the object Python style
|
|
py_obj_print(args[i]);
|
|
}
|
|
}
|
|
printf("\n");
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t py_builtin_len(py_obj_t o_in) {
|
|
py_small_int_t len = 0;
|
|
if (IS_O(o_in, O_STR)) {
|
|
py_obj_base_t *o = o_in;
|
|
len = strlen(qstr_str(o->u_str));
|
|
} else if (IS_O(o_in, O_TUPLE) || IS_O(o_in, O_LIST)) {
|
|
py_obj_base_t *o = o_in;
|
|
len = o->u_tuple_list.len;
|
|
} else if (IS_O(o_in, O_MAP)) {
|
|
py_obj_base_t *o = o_in;
|
|
len = o->u_map.used;
|
|
} else {
|
|
assert(0);
|
|
}
|
|
return TO_SMALL_INT(len);
|
|
}
|
|
|
|
py_obj_t py_builtin_abs(py_obj_t o_in) {
|
|
if (IS_SMALL_INT(o_in)) {
|
|
py_small_int_t val = FROM_SMALL_INT(o_in);
|
|
if (val < 0) {
|
|
val = -val;
|
|
}
|
|
return TO_SMALL_INT(val);
|
|
#if MICROPY_ENABLE_FLOAT
|
|
} else if (IS_O(o_in, O_FLOAT)) {
|
|
py_obj_base_t *o = o_in;
|
|
// TODO check for NaN etc
|
|
if (o->u_float < 0) {
|
|
return py_obj_new_float(-o->u_float);
|
|
} else {
|
|
return o_in;
|
|
}
|
|
} else if (IS_O(o_in, O_COMPLEX)) {
|
|
py_obj_base_t *o = o_in;
|
|
return py_obj_new_float(machine_sqrt(o->u_complex.real*o->u_complex.real + o->u_complex.imag*o->u_complex.imag));
|
|
#endif
|
|
} else {
|
|
assert(0);
|
|
return py_const_none;
|
|
}
|
|
}
|
|
|
|
py_obj_t py_builtin___build_class__(py_obj_t o_class_fun, py_obj_t o_class_name) {
|
|
// we differ from CPython: we set the new __locals__ object here
|
|
py_map_t *old_locals = map_locals;
|
|
py_map_t *class_locals = py_map_new(MAP_QSTR, 0);
|
|
map_locals = class_locals;
|
|
|
|
// call the class code
|
|
rt_call_function_1(o_class_fun, (py_obj_t)0xdeadbeef);
|
|
|
|
// restore old __locals__ object
|
|
map_locals = old_locals;
|
|
|
|
// create and return the new class
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_CLASS;
|
|
o->u_class.locals = class_locals;
|
|
return o;
|
|
}
|
|
|
|
py_obj_t py_builtin_range(py_obj_t o_arg) {
|
|
return py_obj_new_range(0, py_obj_get_int(o_arg), 1);
|
|
}
|
|
|
|
#ifdef WRITE_NATIVE
|
|
FILE *fp_native = NULL;
|
|
#endif
|
|
|
|
void rt_init(void) {
|
|
q_append = qstr_from_str_static("append");
|
|
q_join = qstr_from_str_static("join");
|
|
q_format = qstr_from_str_static("format");
|
|
q___build_class__ = qstr_from_str_static("__build_class__");
|
|
q___next__ = qstr_from_str_static("__next__");
|
|
q_AttributeError = qstr_from_str_static("AttributeError");
|
|
q_IndexError = qstr_from_str_static("IndexError");
|
|
q_KeyError = qstr_from_str_static("KeyError");
|
|
q_NameError = qstr_from_str_static("NameError");
|
|
q_TypeError = qstr_from_str_static("TypeError");
|
|
q_SyntaxError = qstr_from_str_static("SyntaxError");
|
|
|
|
py_const_none = py_obj_new_const("None");
|
|
py_const_false = py_obj_new_const("False");
|
|
py_const_true = py_obj_new_const("True");
|
|
py_const_stop_iteration = py_obj_new_const("StopIteration");
|
|
|
|
// locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
|
|
map_locals = map_globals = py_map_new(MAP_QSTR, 1);
|
|
py_qstr_map_lookup(map_globals, qstr_from_str_static("__name__"), true)->value = py_obj_new_str(qstr_from_str_static("__main__"));
|
|
|
|
py_map_init(&map_builtins, MAP_QSTR, 3);
|
|
py_qstr_map_lookup(&map_builtins, qstr_from_str_static("__repl_print__"), true)->value = rt_make_function_1(py_builtin___repl_print__);
|
|
py_qstr_map_lookup(&map_builtins, qstr_from_str_static("print"), true)->value = rt_make_function_var(0, py_builtin_print);
|
|
py_qstr_map_lookup(&map_builtins, qstr_from_str_static("len"), true)->value = rt_make_function_1(py_builtin_len);
|
|
py_qstr_map_lookup(&map_builtins, qstr_from_str_static("abs"), true)->value = rt_make_function_1(py_builtin_abs);
|
|
py_qstr_map_lookup(&map_builtins, q___build_class__, true)->value = rt_make_function_2(py_builtin___build_class__);
|
|
py_qstr_map_lookup(&map_builtins, qstr_from_str_static("range"), true)->value = rt_make_function_1(py_builtin_range);
|
|
|
|
next_unique_code_id = 2; // 1 is reserved for the __main__ module scope
|
|
unique_codes = NULL;
|
|
|
|
fun_str_join = rt_make_function_2(rt_str_join);
|
|
fun_str_format = rt_make_function_var(1, rt_str_format);
|
|
fun_list_append = rt_make_function_2(rt_list_append);
|
|
fun_gen_instance_next = rt_make_function_1(rt_gen_instance_next);
|
|
|
|
#ifdef WRITE_NATIVE
|
|
fp_native = fopen("out-native", "wb");
|
|
#endif
|
|
}
|
|
|
|
void rt_deinit(void) {
|
|
#ifdef WRITE_NATIVE
|
|
if (fp_native != NULL) {
|
|
fclose(fp_native);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int rt_get_unique_code_id(bool is_main_module) {
|
|
if (is_main_module) {
|
|
return 1;
|
|
} else {
|
|
return next_unique_code_id++;
|
|
}
|
|
}
|
|
|
|
static void alloc_unique_codes(void) {
|
|
if (unique_codes == NULL) {
|
|
unique_codes = m_new(py_code_t, next_unique_code_id + 10); // XXX hack until we fix the REPL allocation problem
|
|
for (int i = 0; i < next_unique_code_id; i++) {
|
|
unique_codes[i].kind = PY_CODE_NONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
void rt_assign_byte_code(int unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_stack, bool is_generator) {
|
|
alloc_unique_codes();
|
|
|
|
assert(unique_code_id < next_unique_code_id);
|
|
unique_codes[unique_code_id].kind = PY_CODE_BYTE;
|
|
unique_codes[unique_code_id].n_args = n_args;
|
|
unique_codes[unique_code_id].n_locals = n_locals;
|
|
unique_codes[unique_code_id].n_stack = n_stack;
|
|
unique_codes[unique_code_id].is_generator = is_generator;
|
|
unique_codes[unique_code_id].u_byte.code = code;
|
|
unique_codes[unique_code_id].u_byte.len = len;
|
|
|
|
DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d\n", unique_code_id, code, len, n_args);
|
|
}
|
|
|
|
void rt_assign_native_code(int unique_code_id, py_fun_t fun, uint len, int n_args) {
|
|
alloc_unique_codes();
|
|
|
|
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id);
|
|
unique_codes[unique_code_id].kind = PY_CODE_NATIVE;
|
|
unique_codes[unique_code_id].n_args = n_args;
|
|
unique_codes[unique_code_id].n_locals = 0;
|
|
unique_codes[unique_code_id].n_stack = 0;
|
|
unique_codes[unique_code_id].is_generator = false;
|
|
unique_codes[unique_code_id].u_native.fun = fun;
|
|
|
|
#ifdef DEBUG_PRINT
|
|
DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
|
|
byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
|
|
for (int i = 0; i < 128 && i < len; i++) {
|
|
if (i > 0 && i % 16 == 0) {
|
|
DEBUG_printf("\n");
|
|
}
|
|
DEBUG_printf(" %02x", fun_data[i]);
|
|
}
|
|
DEBUG_printf("\n");
|
|
|
|
#ifdef WRITE_NATIVE
|
|
if (fp_native != NULL) {
|
|
fwrite(fun_data, len, 1, fp_native);
|
|
fflush(fp_native);
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void rt_assign_inline_asm_code(int unique_code_id, py_fun_t fun, uint len, int n_args) {
|
|
alloc_unique_codes();
|
|
|
|
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id);
|
|
unique_codes[unique_code_id].kind = PY_CODE_INLINE_ASM;
|
|
unique_codes[unique_code_id].n_args = n_args;
|
|
unique_codes[unique_code_id].n_locals = 0;
|
|
unique_codes[unique_code_id].n_stack = 0;
|
|
unique_codes[unique_code_id].is_generator = false;
|
|
unique_codes[unique_code_id].u_inline_asm.fun = fun;
|
|
|
|
#ifdef DEBUG_PRINT
|
|
DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
|
|
byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
|
|
for (int i = 0; i < 128 && i < len; i++) {
|
|
if (i > 0 && i % 16 == 0) {
|
|
DEBUG_printf("\n");
|
|
}
|
|
DEBUG_printf(" %02x", fun_data[i]);
|
|
}
|
|
DEBUG_printf("\n");
|
|
|
|
#ifdef WRITE_NATIVE
|
|
if (fp_native != NULL) {
|
|
fwrite(fun_data, len, 1, fp_native);
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
bool py_obj_is_callable(py_obj_t o_in) {
|
|
if (IS_SMALL_INT(o_in)) {
|
|
return false;
|
|
} else {
|
|
py_obj_base_t *o = o_in;
|
|
switch (o->kind) {
|
|
case O_FUN_0:
|
|
case O_FUN_1:
|
|
case O_FUN_2:
|
|
case O_FUN_VAR:
|
|
case O_FUN_N:
|
|
case O_FUN_BC:
|
|
case O_FUN_ASM:
|
|
// what about O_CLASS, and an O_OBJ that has a __call__ method?
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
void py_obj_print(py_obj_t o_in) {
|
|
py_obj_print_helper(printf_wrapper, NULL, o_in);
|
|
}
|
|
|
|
#define PARSE_DEC_IN_INTG (1)
|
|
#define PARSE_DEC_IN_FRAC (2)
|
|
#define PARSE_DEC_IN_EXP (3)
|
|
|
|
py_obj_t rt_load_const_dec(qstr qstr) {
|
|
#if MICROPY_ENABLE_FLOAT
|
|
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
|
|
const char *s = qstr_str(qstr);
|
|
int in = PARSE_DEC_IN_INTG;
|
|
py_float_t dec_val = 0;
|
|
bool exp_neg = false;
|
|
int exp_val = 0;
|
|
int exp_extra = 0;
|
|
bool imag = false;
|
|
for (; *s; s++) {
|
|
int dig = *s;
|
|
if ('0' <= dig && dig <= '9') {
|
|
dig -= '0';
|
|
if (in == PARSE_DEC_IN_EXP) {
|
|
exp_val = 10 * exp_val + dig;
|
|
} else {
|
|
dec_val = 10 * dec_val + dig;
|
|
if (in == PARSE_DEC_IN_FRAC) {
|
|
exp_extra -= 1;
|
|
}
|
|
}
|
|
} else if (in == PARSE_DEC_IN_INTG && dig == '.') {
|
|
in = PARSE_DEC_IN_FRAC;
|
|
} else if (in != PARSE_DEC_IN_EXP && (dig == 'E' || dig == 'e')) {
|
|
in = PARSE_DEC_IN_EXP;
|
|
if (s[1] == '+') {
|
|
s++;
|
|
} else if (s[1] == '-') {
|
|
s++;
|
|
exp_neg = true;
|
|
}
|
|
} else if (dig == 'J' || dig == 'j') {
|
|
s++;
|
|
imag = true;
|
|
break;
|
|
} else {
|
|
// unknown character
|
|
break;
|
|
}
|
|
}
|
|
if (*s != 0) {
|
|
nlr_jump(py_obj_new_exception_2(q_SyntaxError, "invalid syntax for number", NULL, NULL));
|
|
}
|
|
if (exp_neg) {
|
|
exp_val = -exp_val;
|
|
}
|
|
exp_val += exp_extra;
|
|
for (; exp_val > 0; exp_val--) {
|
|
dec_val *= 10;
|
|
}
|
|
for (; exp_val < 0; exp_val++) {
|
|
dec_val *= 0.1;
|
|
}
|
|
if (imag) {
|
|
return py_obj_new_complex(0, dec_val);
|
|
} else {
|
|
return py_obj_new_float(dec_val);
|
|
}
|
|
#else
|
|
nlr_jump(py_obj_new_exception_2(q_SyntaxError, "decimal numbers not supported", NULL, NULL));
|
|
#endif
|
|
}
|
|
|
|
py_obj_t rt_load_const_str(qstr qstr) {
|
|
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
|
|
return py_obj_new_str(qstr);
|
|
}
|
|
|
|
py_obj_t rt_load_name(qstr qstr) {
|
|
// logic: search locals, globals, builtins
|
|
DEBUG_OP_printf("load name %s\n", qstr_str(qstr));
|
|
py_map_elem_t *elem = py_qstr_map_lookup(map_locals, qstr, false);
|
|
if (elem == NULL) {
|
|
elem = py_qstr_map_lookup(map_globals, qstr, false);
|
|
if (elem == NULL) {
|
|
elem = py_qstr_map_lookup(&map_builtins, qstr, false);
|
|
if (elem == NULL) {
|
|
nlr_jump(py_obj_new_exception_2(q_NameError, "name '%s' is not defined", qstr_str(qstr), NULL));
|
|
}
|
|
}
|
|
}
|
|
return elem->value;
|
|
}
|
|
|
|
py_obj_t rt_load_global(qstr qstr) {
|
|
// logic: search globals, builtins
|
|
DEBUG_OP_printf("load global %s\n", qstr_str(qstr));
|
|
py_map_elem_t *elem = py_qstr_map_lookup(map_globals, qstr, false);
|
|
if (elem == NULL) {
|
|
elem = py_qstr_map_lookup(&map_builtins, qstr, false);
|
|
if (elem == NULL) {
|
|
nlr_jump(py_obj_new_exception_2(q_NameError, "name '%s' is not defined", qstr_str(qstr), NULL));
|
|
}
|
|
}
|
|
return elem->value;
|
|
}
|
|
|
|
py_obj_t rt_load_build_class(void) {
|
|
DEBUG_OP_printf("load_build_class\n");
|
|
py_map_elem_t *elem = py_qstr_map_lookup(&map_builtins, q___build_class__, false);
|
|
if (elem == NULL) {
|
|
printf("name doesn't exist: __build_class__\n");
|
|
assert(0);
|
|
}
|
|
return elem->value;
|
|
}
|
|
|
|
void rt_store_name(qstr qstr, py_obj_t obj) {
|
|
DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj);
|
|
py_qstr_map_lookup(map_locals, qstr, true)->value = obj;
|
|
}
|
|
|
|
void rt_store_global(qstr qstr, py_obj_t obj) {
|
|
DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj);
|
|
py_qstr_map_lookup(map_globals, qstr, true)->value = obj;
|
|
}
|
|
|
|
py_obj_t rt_unary_op(int op, py_obj_t arg) {
|
|
DEBUG_OP_printf("unary %d %p\n", op, arg);
|
|
if (IS_SMALL_INT(arg)) {
|
|
py_small_int_t val = FROM_SMALL_INT(arg);
|
|
switch (op) {
|
|
case RT_UNARY_OP_NOT: if (val != 0) { return py_const_true;} else { return py_const_false; }
|
|
case RT_UNARY_OP_POSITIVE: break;
|
|
case RT_UNARY_OP_NEGATIVE: val = -val; break;
|
|
case RT_UNARY_OP_INVERT: val = ~val; break;
|
|
default: assert(0); val = 0;
|
|
}
|
|
if (fit_small_int(val)) {
|
|
return TO_SMALL_INT(val);
|
|
}
|
|
#if MICROPY_ENABLE_FLOAT
|
|
} else if (IS_O(arg, O_FLOAT)) {
|
|
py_float_t val = py_obj_get_float(arg);
|
|
switch (op) {
|
|
case RT_UNARY_OP_NOT: if (val != 0) { return py_const_true;} else { return py_const_false; }
|
|
case RT_UNARY_OP_POSITIVE: break;
|
|
case RT_UNARY_OP_NEGATIVE: val = -val; break;
|
|
case RT_UNARY_OP_INVERT: nlr_jump(py_obj_new_exception_2(q_TypeError, "bad operand type for unary ~: 'float'", NULL, NULL));
|
|
default: assert(0); val = 0;
|
|
}
|
|
return py_obj_new_float(val);
|
|
#endif
|
|
}
|
|
assert(0);
|
|
return py_const_none;
|
|
}
|
|
|
|
uint get_index(py_obj_base_t *base, py_obj_t index) {
|
|
// assumes base is O_TUPLE or O_LIST
|
|
// TODO False and True are considered 0 and 1 for indexing purposes
|
|
int len = base->u_tuple_list.len;
|
|
if (IS_SMALL_INT(index)) {
|
|
int i = FROM_SMALL_INT(index);
|
|
if (i < 0) {
|
|
i += len;
|
|
}
|
|
if (i < 0 || i >= len) {
|
|
nlr_jump(py_obj_new_exception_2(q_IndexError, "%s index out of range", py_obj_get_type_str(base), NULL));
|
|
}
|
|
return i;
|
|
} else {
|
|
nlr_jump(py_obj_new_exception_2(q_TypeError, "%s indices must be integers, not %s", py_obj_get_type_str(base), py_obj_get_type_str(index)));
|
|
}
|
|
}
|
|
|
|
py_obj_t rt_binary_op(int op, py_obj_t lhs, py_obj_t rhs) {
|
|
DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs);
|
|
if (op == RT_BINARY_OP_SUBSCR) {
|
|
if (IS_O(lhs, O_STR)) {
|
|
// string access
|
|
// XXX a hack!
|
|
const char *str = qstr_str(((py_obj_base_t*)lhs)->u_str);
|
|
return py_obj_new_int(str[FROM_SMALL_INT(rhs)]);
|
|
} else if ((IS_O(lhs, O_TUPLE) || IS_O(lhs, O_LIST))) {
|
|
// tuple/list load
|
|
uint index = get_index(lhs, rhs);
|
|
return ((py_obj_base_t*)lhs)->u_tuple_list.items[index];
|
|
} else if (IS_O(lhs, O_MAP)) {
|
|
// map load
|
|
py_map_elem_t *elem = py_map_lookup(lhs, rhs, false);
|
|
if (elem == NULL) {
|
|
nlr_jump(py_obj_new_exception_2(q_KeyError, "<value>", NULL, NULL));
|
|
} else {
|
|
return elem->value;
|
|
}
|
|
} else {
|
|
assert(0);
|
|
}
|
|
} else if (IS_SMALL_INT(lhs) && IS_SMALL_INT(rhs)) {
|
|
py_small_int_t lhs_val = FROM_SMALL_INT(lhs);
|
|
py_small_int_t rhs_val = FROM_SMALL_INT(rhs);
|
|
switch (op) {
|
|
case RT_BINARY_OP_OR:
|
|
case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
|
|
case RT_BINARY_OP_XOR:
|
|
case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
|
|
case RT_BINARY_OP_AND:
|
|
case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
|
|
case RT_BINARY_OP_LSHIFT:
|
|
case RT_BINARY_OP_INPLACE_LSHIFT: lhs_val <<= rhs_val; break;
|
|
case RT_BINARY_OP_RSHIFT:
|
|
case RT_BINARY_OP_INPLACE_RSHIFT: lhs_val >>= rhs_val; break;
|
|
case RT_BINARY_OP_ADD:
|
|
case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
|
|
case RT_BINARY_OP_SUBTRACT:
|
|
case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
|
|
case RT_BINARY_OP_MULTIPLY:
|
|
case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break;
|
|
case RT_BINARY_OP_FLOOR_DIVIDE:
|
|
case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break;
|
|
#if MICROPY_ENABLE_FLOAT
|
|
case RT_BINARY_OP_TRUE_DIVIDE:
|
|
case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return py_obj_new_float((py_float_t)lhs_val / (py_float_t)rhs_val);
|
|
#endif
|
|
case RT_BINARY_OP_POWER:
|
|
case RT_BINARY_OP_INPLACE_POWER:
|
|
// TODO
|
|
if (rhs_val == 2) {
|
|
lhs_val = lhs_val * lhs_val;
|
|
break;
|
|
}
|
|
default: printf("%d\n", op); assert(0);
|
|
}
|
|
if (fit_small_int(lhs_val)) {
|
|
return TO_SMALL_INT(lhs_val);
|
|
}
|
|
#if MICROPY_ENABLE_FLOAT
|
|
} else if (IS_O(lhs, O_COMPLEX) || IS_O(rhs, O_COMPLEX)) {
|
|
py_float_t lhs_real, lhs_imag, rhs_real, rhs_imag;
|
|
py_obj_get_complex(lhs, &lhs_real, &lhs_imag);
|
|
py_obj_get_complex(rhs, &rhs_real, &rhs_imag);
|
|
switch (op) {
|
|
case RT_BINARY_OP_ADD:
|
|
case RT_BINARY_OP_INPLACE_ADD:
|
|
lhs_real += rhs_real;
|
|
lhs_imag += rhs_imag;
|
|
break;
|
|
case RT_BINARY_OP_SUBTRACT:
|
|
case RT_BINARY_OP_INPLACE_SUBTRACT:
|
|
lhs_real -= rhs_real;
|
|
lhs_imag -= rhs_imag;
|
|
break;
|
|
case RT_BINARY_OP_MULTIPLY:
|
|
case RT_BINARY_OP_INPLACE_MULTIPLY:
|
|
{
|
|
py_float_t real = lhs_real * rhs_real - lhs_imag * rhs_imag;
|
|
lhs_imag = lhs_real * rhs_imag + lhs_imag * rhs_real;
|
|
lhs_real = real;
|
|
break;
|
|
}
|
|
/* TODO floor(?) the value
|
|
case RT_BINARY_OP_FLOOR_DIVIDE:
|
|
case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: val = lhs_val / rhs_val; break;
|
|
*/
|
|
/* TODO
|
|
case RT_BINARY_OP_TRUE_DIVIDE:
|
|
case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: val = lhs_val / rhs_val; break;
|
|
*/
|
|
default: printf("%d\n", op); assert(0);
|
|
}
|
|
return py_obj_new_complex(lhs_real, lhs_imag);
|
|
} else if (IS_O(lhs, O_FLOAT) || IS_O(rhs, O_FLOAT)) {
|
|
py_float_t lhs_val = py_obj_get_float(lhs);
|
|
py_float_t rhs_val = py_obj_get_float(rhs);
|
|
switch (op) {
|
|
case RT_BINARY_OP_ADD:
|
|
case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
|
|
case RT_BINARY_OP_SUBTRACT:
|
|
case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
|
|
case RT_BINARY_OP_MULTIPLY:
|
|
case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break;
|
|
/* TODO floor(?) the value
|
|
case RT_BINARY_OP_FLOOR_DIVIDE:
|
|
case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: val = lhs_val / rhs_val; break;
|
|
*/
|
|
case RT_BINARY_OP_TRUE_DIVIDE:
|
|
case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: lhs_val /= rhs_val; break;
|
|
default: printf("%d\n", op); assert(0);
|
|
}
|
|
return py_obj_new_float(lhs_val);
|
|
#endif
|
|
} else if (IS_O(lhs, O_STR) && IS_O(rhs, O_STR)) {
|
|
const char *lhs_str = qstr_str(((py_obj_base_t*)lhs)->u_str);
|
|
const char *rhs_str = qstr_str(((py_obj_base_t*)rhs)->u_str);
|
|
char *val;
|
|
switch (op) {
|
|
case RT_BINARY_OP_ADD:
|
|
case RT_BINARY_OP_INPLACE_ADD: val = m_new(char, strlen(lhs_str) + strlen(rhs_str) + 1); strcpy(val, lhs_str); strcat(val, rhs_str); break;
|
|
default: printf("%d\n", op); assert(0); val = NULL;
|
|
}
|
|
return py_obj_new_str(qstr_from_str_take(val));
|
|
}
|
|
assert(0);
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t rt_compare_op(int op, py_obj_t lhs, py_obj_t rhs) {
|
|
DEBUG_OP_printf("compare %d %p %p\n", op, lhs, rhs);
|
|
|
|
// deal with == and !=
|
|
if (op == RT_COMPARE_OP_EQUAL || op == RT_COMPARE_OP_NOT_EQUAL) {
|
|
if (py_obj_equal(lhs, rhs)) {
|
|
if (op == RT_COMPARE_OP_EQUAL) {
|
|
return py_const_true;
|
|
} else {
|
|
return py_const_false;
|
|
}
|
|
} else {
|
|
if (op == RT_COMPARE_OP_EQUAL) {
|
|
return py_const_false;
|
|
} else {
|
|
return py_const_true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// deal with small ints
|
|
if (IS_SMALL_INT(lhs) && IS_SMALL_INT(rhs)) {
|
|
py_small_int_t lhs_val = FROM_SMALL_INT(lhs);
|
|
py_small_int_t rhs_val = FROM_SMALL_INT(rhs);
|
|
int cmp;
|
|
switch (op) {
|
|
case RT_COMPARE_OP_LESS: cmp = lhs_val < rhs_val; break;
|
|
case RT_COMPARE_OP_MORE: cmp = lhs_val > rhs_val; break;
|
|
case RT_COMPARE_OP_LESS_EQUAL: cmp = lhs_val <= rhs_val; break;
|
|
case RT_COMPARE_OP_MORE_EQUAL: cmp = lhs_val >= rhs_val; break;
|
|
default: assert(0); cmp = 0;
|
|
}
|
|
if (cmp) {
|
|
return py_const_true;
|
|
} else {
|
|
return py_const_false;
|
|
}
|
|
}
|
|
|
|
#if MICROPY_ENABLE_FLOAT
|
|
// deal with floats
|
|
if (IS_O(lhs, O_FLOAT) || IS_O(rhs, O_FLOAT)) {
|
|
py_float_t lhs_val = py_obj_get_float(lhs);
|
|
py_float_t rhs_val = py_obj_get_float(rhs);
|
|
int cmp;
|
|
switch (op) {
|
|
case RT_COMPARE_OP_LESS: cmp = lhs_val < rhs_val; break;
|
|
case RT_COMPARE_OP_MORE: cmp = lhs_val > rhs_val; break;
|
|
case RT_COMPARE_OP_LESS_EQUAL: cmp = lhs_val <= rhs_val; break;
|
|
case RT_COMPARE_OP_MORE_EQUAL: cmp = lhs_val >= rhs_val; break;
|
|
default: assert(0); cmp = 0;
|
|
}
|
|
if (cmp) {
|
|
return py_const_true;
|
|
} else {
|
|
return py_const_false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// not implemented
|
|
assert(0);
|
|
return py_const_none;
|
|
}
|
|
|
|
py_obj_t rt_make_function_from_id(int unique_code_id) {
|
|
DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id);
|
|
if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) {
|
|
// illegal code id
|
|
return py_const_none;
|
|
}
|
|
py_code_t *c = &unique_codes[unique_code_id];
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
switch (c->kind) {
|
|
case PY_CODE_BYTE:
|
|
o->kind = O_FUN_BC;
|
|
o->u_fun_bc.n_args = c->n_args;
|
|
o->u_fun_bc.n_state = c->n_locals + c->n_stack;
|
|
o->u_fun_bc.code = c->u_byte.code;
|
|
break;
|
|
case PY_CODE_NATIVE:
|
|
switch (c->n_args) {
|
|
case 0: o->kind = O_FUN_0; break;
|
|
case 1: o->kind = O_FUN_1; break;
|
|
case 2: o->kind = O_FUN_2; break;
|
|
default: assert(0);
|
|
}
|
|
o->u_fun.fun = c->u_native.fun;
|
|
break;
|
|
case PY_CODE_INLINE_ASM:
|
|
o->kind = O_FUN_ASM;
|
|
o->u_fun_asm.n_args = c->n_args;
|
|
o->u_fun_asm.fun = c->u_inline_asm.fun;
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
// check for generator functions and if so wrap in generator object
|
|
if (c->is_generator) {
|
|
py_obj_base_t *o2 = m_new(py_obj_base_t, 1);
|
|
o2->kind = O_GEN_WRAP;
|
|
// we have at least 3 locals so the bc can write back fast[0,1,2] safely; should improve how this is done
|
|
o2->u_gen_wrap.n_state = (c->n_locals < 3 ? 3 : c->n_locals) + c->n_stack;
|
|
o2->u_gen_wrap.fun = o;
|
|
o = o2;
|
|
}
|
|
|
|
return o;
|
|
}
|
|
|
|
py_obj_t rt_make_function_0(py_fun_0_t fun) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_FUN_0;
|
|
o->u_fun.fun = fun;
|
|
return o;
|
|
}
|
|
|
|
py_obj_t rt_make_function_1(py_fun_1_t fun) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_FUN_1;
|
|
o->u_fun.fun = fun;
|
|
return o;
|
|
}
|
|
|
|
py_obj_t rt_make_function_2(py_fun_2_t fun) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_FUN_2;
|
|
o->u_fun.fun = fun;
|
|
return o;
|
|
}
|
|
|
|
py_obj_t rt_make_function(int n_args, py_fun_t code) {
|
|
// assumes code is a pointer to a py_fun_t (i think this is safe...)
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_FUN_N;
|
|
o->u_fun.n_args = n_args;
|
|
o->u_fun.fun = code;
|
|
return o;
|
|
}
|
|
|
|
py_obj_t rt_make_function_var(int n_fixed_args, py_fun_var_t f) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_FUN_VAR;
|
|
o->u_fun.n_args = n_fixed_args;
|
|
o->u_fun.fun = f;
|
|
return o;
|
|
}
|
|
|
|
py_obj_t rt_call_function_0(py_obj_t fun) {
|
|
return rt_call_function_n(fun, 0, NULL);
|
|
}
|
|
|
|
py_obj_t rt_call_function_1(py_obj_t fun, py_obj_t arg) {
|
|
return rt_call_function_n(fun, 1, &arg);
|
|
}
|
|
|
|
py_obj_t rt_call_function_2(py_obj_t fun, py_obj_t arg1, py_obj_t arg2) {
|
|
py_obj_t args[2];
|
|
args[1] = arg1;
|
|
args[0] = arg2;
|
|
return rt_call_function_n(fun, 2, args);
|
|
}
|
|
|
|
typedef machine_uint_t (*inline_asm_fun_0_t)();
|
|
typedef machine_uint_t (*inline_asm_fun_1_t)(machine_uint_t);
|
|
typedef machine_uint_t (*inline_asm_fun_2_t)(machine_uint_t, machine_uint_t);
|
|
typedef machine_uint_t (*inline_asm_fun_3_t)(machine_uint_t, machine_uint_t, machine_uint_t);
|
|
|
|
// convert a Python object to a sensible value for inline asm
|
|
machine_uint_t rt_convert_obj_for_inline_asm(py_obj_t obj) {
|
|
// TODO for byte_array, pass pointer to the array
|
|
if (IS_SMALL_INT(obj)) {
|
|
return FROM_SMALL_INT(obj);
|
|
} else if (obj == py_const_none) {
|
|
return 0;
|
|
} else if (obj == py_const_false) {
|
|
return 0;
|
|
} else if (obj == py_const_true) {
|
|
return 1;
|
|
} else {
|
|
py_obj_base_t *o = obj;
|
|
switch (o->kind) {
|
|
case O_STR:
|
|
// pointer to the string (it's probably constant though!)
|
|
return (machine_uint_t)qstr_str(o->u_str);
|
|
|
|
#if MICROPY_ENABLE_FLOAT
|
|
case O_FLOAT:
|
|
// convert float to int (could also pass in float registers)
|
|
return (machine_int_t)o->u_float;
|
|
#endif
|
|
|
|
case O_TUPLE:
|
|
case O_LIST:
|
|
// pointer to start of tuple/list (could pass length, but then could use len(x) for that)
|
|
return (machine_uint_t)o->u_tuple_list.items;
|
|
|
|
default:
|
|
// just pass along a pointer to the object
|
|
return (machine_uint_t)obj;
|
|
}
|
|
}
|
|
}
|
|
|
|
// convert a return value from inline asm to a sensible Python object
|
|
py_obj_t rt_convert_val_from_inline_asm(machine_uint_t val) {
|
|
return TO_SMALL_INT(val);
|
|
}
|
|
|
|
// args are in reverse order in the array
|
|
py_obj_t rt_call_function_n(py_obj_t fun, int n_args, const py_obj_t *args) {
|
|
int n_args_fun = 0;
|
|
if (IS_O(fun, O_FUN_0)) {
|
|
py_obj_base_t *o = fun;
|
|
if (n_args != 0) {
|
|
n_args_fun = 0;
|
|
goto bad_n_args;
|
|
}
|
|
DEBUG_OP_printf("calling native %p()\n", o->u_fun.fun);
|
|
return ((py_fun_0_t)o->u_fun.fun)();
|
|
|
|
} else if (IS_O(fun, O_FUN_1)) {
|
|
py_obj_base_t *o = fun;
|
|
if (n_args != 1) {
|
|
n_args_fun = 1;
|
|
goto bad_n_args;
|
|
}
|
|
DEBUG_OP_printf("calling native %p(%p)\n", o->u_fun.fun, args[0]);
|
|
return ((py_fun_1_t)o->u_fun.fun)(args[0]);
|
|
|
|
} else if (IS_O(fun, O_FUN_2)) {
|
|
py_obj_base_t *o = fun;
|
|
if (n_args != 2) {
|
|
n_args_fun = 2;
|
|
goto bad_n_args;
|
|
}
|
|
DEBUG_OP_printf("calling native %p(%p, %p)\n", o->u_fun.fun, args[1], args[0]);
|
|
return ((py_fun_2_t)o->u_fun.fun)(args[1], args[0]);
|
|
|
|
// TODO O_FUN_N
|
|
|
|
} else if (IS_O(fun, O_FUN_VAR)) {
|
|
py_obj_base_t *o = fun;
|
|
if (n_args < o->u_fun.n_args) {
|
|
nlr_jump(py_obj_new_exception_2(q_TypeError, "<fun name>() missing %d required positional arguments: <list of names of params>", (const char*)(machine_int_t)(o->u_fun.n_args - n_args), NULL));
|
|
}
|
|
// TODO really the args need to be passed in as a Python tuple, as the form f(*[1,2]) can be used to pass var args
|
|
py_obj_t *args_ordered = m_new(py_obj_t, n_args);
|
|
for (int i = 0; i < n_args; i++) {
|
|
args_ordered[i] = args[n_args - i - 1];
|
|
}
|
|
py_obj_t res = ((py_fun_var_t)o->u_fun.fun)(n_args, args_ordered);
|
|
m_free(args_ordered);
|
|
return res;
|
|
|
|
} else if (IS_O(fun, O_FUN_BC)) {
|
|
py_obj_base_t *o = fun;
|
|
if (n_args != o->u_fun_bc.n_args) {
|
|
n_args_fun = o->u_fun_bc.n_args;
|
|
goto bad_n_args;
|
|
}
|
|
DEBUG_OP_printf("calling byte code %p(n_args=%d)\n", o->u_fun_bc.code, n_args);
|
|
return py_execute_byte_code(o->u_fun_bc.code, args, n_args, o->u_fun_bc.n_state);
|
|
|
|
} else if (IS_O(fun, O_FUN_ASM)) {
|
|
py_obj_base_t *o = fun;
|
|
if (n_args != o->u_fun_asm.n_args) {
|
|
n_args_fun = o->u_fun_asm.n_args;
|
|
goto bad_n_args;
|
|
}
|
|
DEBUG_OP_printf("calling inline asm %p(n_args=%d)\n", o->u_fun_asm.fun, n_args);
|
|
machine_uint_t ret;
|
|
if (n_args == 0) {
|
|
ret = ((inline_asm_fun_0_t)o->u_fun_asm.fun)();
|
|
} else if (n_args == 1) {
|
|
ret = ((inline_asm_fun_1_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[0]));
|
|
} else if (n_args == 2) {
|
|
ret = ((inline_asm_fun_2_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[1]), rt_convert_obj_for_inline_asm(args[0]));
|
|
} else if (n_args == 3) {
|
|
ret = ((inline_asm_fun_3_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[2]), rt_convert_obj_for_inline_asm(args[1]), rt_convert_obj_for_inline_asm(args[0]));
|
|
} else {
|
|
assert(0);
|
|
ret = 0;
|
|
}
|
|
return rt_convert_val_from_inline_asm(ret);
|
|
|
|
} else if (IS_O(fun, O_GEN_WRAP)) {
|
|
py_obj_base_t *o = fun;
|
|
py_obj_base_t *o_fun = o->u_gen_wrap.fun;
|
|
assert(o_fun->kind == O_FUN_BC); // TODO
|
|
if (n_args != o_fun->u_fun_bc.n_args) {
|
|
n_args_fun = o_fun->u_fun_bc.n_args;
|
|
goto bad_n_args;
|
|
}
|
|
py_obj_t *state = m_new(py_obj_t, 1 + o->u_gen_wrap.n_state);
|
|
// put function object at first slot in state (to keep u_gen_instance small)
|
|
state[0] = o_fun;
|
|
// init args
|
|
for (int i = 0; i < n_args; i++) {
|
|
state[1 + i] = args[n_args - 1 - i];
|
|
}
|
|
py_obj_base_t *o2 = m_new(py_obj_base_t, 1);
|
|
o2->kind = O_GEN_INSTANCE;
|
|
o2->u_gen_instance.state = state;
|
|
o2->u_gen_instance.ip = o_fun->u_fun_bc.code;
|
|
o2->u_gen_instance.sp = state + o->u_gen_wrap.n_state;
|
|
return o2;
|
|
|
|
} else if (IS_O(fun, O_BOUND_METH)) {
|
|
py_obj_base_t *o = fun;
|
|
DEBUG_OP_printf("calling bound method %p(self=%p, n_args=%d)\n", o->u_bound_meth.meth, o->u_bound_meth.self, n_args);
|
|
if (n_args == 0) {
|
|
return rt_call_function_n(o->u_bound_meth.meth, 1, &o->u_bound_meth.self);
|
|
} else if (n_args == 1) {
|
|
py_obj_t args2[2];
|
|
args2[1] = o->u_bound_meth.self;
|
|
args2[0] = args[0];
|
|
return rt_call_function_n(o->u_bound_meth.meth, 2, args2);
|
|
} else {
|
|
// TODO not implemented
|
|
assert(0);
|
|
return py_const_none;
|
|
//return rt_call_function_2(o->u_bound_meth.meth, n_args + 1, o->u_bound_meth.self + args);
|
|
}
|
|
|
|
} else if (IS_O(fun, O_CLASS)) {
|
|
// instantiate an instance of a class
|
|
if (n_args != 0) {
|
|
n_args_fun = 0;
|
|
goto bad_n_args;
|
|
}
|
|
DEBUG_OP_printf("instantiate object of class %p with no args\n", fun);
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_OBJ;
|
|
o->u_obj.class = fun;
|
|
o->u_obj.members = py_map_new(MAP_QSTR, 0);
|
|
return o;
|
|
|
|
} else {
|
|
printf("fun %p %d\n", fun, ((py_obj_base_t*)fun)->kind);
|
|
assert(0);
|
|
return py_const_none;
|
|
}
|
|
|
|
bad_n_args:
|
|
nlr_jump(py_obj_new_exception_2(q_TypeError, "function takes %d positional arguments but %d were given", (const char*)(machine_int_t)n_args_fun, (const char*)(machine_int_t)n_args));
|
|
}
|
|
|
|
// args contains: arg(n_args-1) arg(n_args-2) ... arg(0) self/NULL fun
|
|
// if n_args==0 then there are only self/NULL and fun
|
|
py_obj_t rt_call_method_n(int n_args, const py_obj_t *args) {
|
|
DEBUG_OP_printf("call method %p(self=%p, n_args=%d)\n", args[n_args + 1], args[n_args], n_args);
|
|
return rt_call_function_n(args[n_args + 1], n_args + ((args[n_args] == NULL) ? 0 : 1), args);
|
|
}
|
|
|
|
// items are in reverse order
|
|
py_obj_t rt_build_tuple(int n_args, py_obj_t *items) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_TUPLE;
|
|
o->u_tuple_list.alloc = n_args < 4 ? 4 : n_args;
|
|
o->u_tuple_list.len = n_args;
|
|
o->u_tuple_list.items = m_new(py_obj_t, o->u_tuple_list.alloc);
|
|
for (int i = 0; i < n_args; i++) {
|
|
o->u_tuple_list.items[i] = items[n_args - i - 1];
|
|
}
|
|
return o;
|
|
}
|
|
|
|
// items are in reverse order
|
|
py_obj_t rt_build_list(int n_args, py_obj_t *items) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_LIST;
|
|
o->u_tuple_list.alloc = n_args < 4 ? 4 : n_args;
|
|
o->u_tuple_list.len = n_args;
|
|
o->u_tuple_list.items = m_new(py_obj_t, o->u_tuple_list.alloc);
|
|
for (int i = 0; i < n_args; i++) {
|
|
o->u_tuple_list.items[i] = items[n_args - i - 1];
|
|
}
|
|
return o;
|
|
}
|
|
|
|
py_obj_t py_set_lookup(py_obj_t o_in, py_obj_t index, bool add_if_not_found) {
|
|
assert(IS_O(o_in, O_SET));
|
|
py_obj_base_t *o = o_in;
|
|
int hash = py_obj_hash(index);
|
|
int pos = hash % o->u_set.alloc;
|
|
for (;;) {
|
|
py_obj_t elem = o->u_set.table[pos];
|
|
if (elem == NULL) {
|
|
// not in table
|
|
if (add_if_not_found) {
|
|
if (o->u_set.used + 1 >= o->u_set.alloc) {
|
|
// not enough room in table, rehash it
|
|
int old_alloc = o->u_set.alloc;
|
|
py_obj_t *old_table = o->u_set.table;
|
|
o->u_set.alloc = get_doubling_prime_greater_or_equal_to(o->u_set.alloc + 1);
|
|
o->u_set.used = 0;
|
|
o->u_set.table = m_new(py_obj_t, o->u_set.alloc);
|
|
for (int i = 0; i < old_alloc; i++) {
|
|
if (old_table[i] != NULL) {
|
|
py_set_lookup(o, old_table[i], true);
|
|
}
|
|
}
|
|
m_free(old_table);
|
|
// restart the search for the new element
|
|
pos = hash % o->u_set.alloc;
|
|
} else {
|
|
o->u_set.used += 1;
|
|
o->u_set.table[pos] = index;
|
|
return index;
|
|
}
|
|
} else {
|
|
return NULL;
|
|
}
|
|
} else if (py_obj_equal(elem, index)) {
|
|
// found it
|
|
return elem;
|
|
} else {
|
|
// not yet found, keep searching in this table
|
|
pos = (pos + 1) % o->u_set.alloc;
|
|
}
|
|
}
|
|
}
|
|
|
|
py_obj_t rt_build_set(int n_args, py_obj_t *items) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_SET;
|
|
o->u_set.alloc = get_doubling_prime_greater_or_equal_to(n_args + 1);
|
|
o->u_set.used = 0;
|
|
o->u_set.table = m_new(py_obj_t, o->u_set.alloc);
|
|
for (int i = 0; i < o->u_set.alloc; i++) {
|
|
o->u_set.table[i] = NULL;
|
|
}
|
|
for (int i = 0; i < n_args; i++) {
|
|
py_set_lookup(o, items[i], true);
|
|
}
|
|
return o;
|
|
}
|
|
|
|
py_obj_t rt_store_set(py_obj_t set, py_obj_t item) {
|
|
py_set_lookup(set, item, true);
|
|
return set;
|
|
}
|
|
|
|
py_obj_t rt_build_map(int n_args) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_MAP;
|
|
py_map_init(&o->u_map, MAP_PY_OBJ, n_args);
|
|
return o;
|
|
}
|
|
|
|
py_obj_t rt_store_map(py_obj_t map, py_obj_t key, py_obj_t value) {
|
|
assert(IS_O(map, O_MAP)); // should always be
|
|
py_map_lookup(map, key, true)->value = value;
|
|
return map;
|
|
}
|
|
|
|
py_obj_t build_bound_method(py_obj_t self, py_obj_t meth) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_BOUND_METH;
|
|
o->u_bound_meth.meth = meth;
|
|
o->u_bound_meth.self = self;
|
|
return o;
|
|
}
|
|
|
|
py_obj_t rt_load_attr(py_obj_t base, qstr attr) {
|
|
DEBUG_OP_printf("load attr %s\n", qstr_str(attr));
|
|
if (IS_O(base, O_LIST) && attr == q_append) {
|
|
return build_bound_method(base, fun_list_append);
|
|
} else if (IS_O(base, O_CLASS)) {
|
|
py_obj_base_t *o = base;
|
|
py_map_elem_t *elem = py_qstr_map_lookup(o->u_class.locals, attr, false);
|
|
if (elem == NULL) {
|
|
goto no_attr;
|
|
}
|
|
return elem->value;
|
|
} else if (IS_O(base, O_OBJ)) {
|
|
// logic: look in obj members then class locals (TODO check this against CPython)
|
|
py_obj_base_t *o = base;
|
|
py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.members, attr, false);
|
|
if (elem != NULL) {
|
|
// object member, always treated as a value
|
|
return elem->value;
|
|
}
|
|
elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false);
|
|
if (elem != NULL) {
|
|
if (py_obj_is_callable(elem->value)) {
|
|
// class member is callable so build a bound method
|
|
return build_bound_method(base, elem->value);
|
|
} else {
|
|
// class member is a value, so just return that value
|
|
return elem->value;
|
|
}
|
|
}
|
|
goto no_attr;
|
|
}
|
|
|
|
no_attr:
|
|
nlr_jump(py_obj_new_exception_2(q_AttributeError, "'%s' object has no attribute '%s'", py_obj_get_type_str(base), qstr_str(attr)));
|
|
}
|
|
|
|
void rt_load_method(py_obj_t base, qstr attr, py_obj_t *dest) {
|
|
DEBUG_OP_printf("load method %s\n", qstr_str(attr));
|
|
if (IS_O(base, O_STR)) {
|
|
if (attr == q_join) {
|
|
dest[1] = fun_str_join;
|
|
dest[0] = base;
|
|
return;
|
|
} else if (attr == q_format) {
|
|
dest[1] = fun_str_format;
|
|
dest[0] = base;
|
|
return;
|
|
}
|
|
} else if (IS_O(base, O_GEN_INSTANCE) && attr == q___next__) {
|
|
dest[1] = fun_gen_instance_next;
|
|
dest[0] = base;
|
|
return;
|
|
} else if (IS_O(base, O_LIST) && attr == q_append) {
|
|
dest[1] = fun_list_append;
|
|
dest[0] = base;
|
|
return;
|
|
} else if (IS_O(base, O_OBJ)) {
|
|
// logic: look in obj members then class locals (TODO check this against CPython)
|
|
py_obj_base_t *o = base;
|
|
py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.members, attr, false);
|
|
if (elem != NULL) {
|
|
// object member, always treated as a value
|
|
dest[1] = elem->value;
|
|
dest[0] = NULL;
|
|
return;
|
|
}
|
|
elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false);
|
|
if (elem != NULL) {
|
|
if (py_obj_is_callable(elem->value)) {
|
|
// class member is callable so build a bound method
|
|
dest[1] = elem->value;
|
|
dest[0] = base;
|
|
return;
|
|
} else {
|
|
// class member is a value, so just return that value
|
|
dest[1] = elem->value;
|
|
dest[0] = NULL;
|
|
return;
|
|
}
|
|
}
|
|
goto no_attr;
|
|
} else if (IS_O(base, O_USER)) {
|
|
py_obj_base_t *o = base;
|
|
const py_user_method_t *meth = &o->u_user.info->methods[0];
|
|
for (; meth->name != NULL; meth++) {
|
|
if (strcmp(meth->name, qstr_str(attr)) == 0) {
|
|
if (meth->kind == 0) {
|
|
dest[1] = rt_make_function_1(meth->fun);
|
|
} else if (meth->kind == 1) {
|
|
dest[1] = rt_make_function_2(meth->fun);
|
|
} else {
|
|
assert(0);
|
|
}
|
|
dest[0] = base;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
no_attr:
|
|
dest[1] = rt_load_attr(base, attr);
|
|
dest[0] = NULL;
|
|
}
|
|
|
|
void rt_store_attr(py_obj_t base, qstr attr, py_obj_t value) {
|
|
DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
|
|
if (IS_O(base, O_CLASS)) {
|
|
// TODO CPython allows STORE_ATTR to a class, but is this the correct implementation?
|
|
py_obj_base_t *o = base;
|
|
py_qstr_map_lookup(o->u_class.locals, attr, true)->value = value;
|
|
} else if (IS_O(base, O_OBJ)) {
|
|
// logic: look in class locals (no add) then obj members (add) (TODO check this against CPython)
|
|
py_obj_base_t *o = base;
|
|
py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false);
|
|
if (elem != NULL) {
|
|
elem->value = value;
|
|
} else {
|
|
py_qstr_map_lookup(o->u_obj.members, attr, true)->value = value;
|
|
}
|
|
} else {
|
|
printf("?AttributeError: '%s' object has no attribute '%s'\n", py_obj_get_type_str(base), qstr_str(attr));
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
void rt_store_subscr(py_obj_t base, py_obj_t index, py_obj_t value) {
|
|
DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value);
|
|
if (IS_O(base, O_LIST)) {
|
|
// list store
|
|
uint i = get_index(base, index);
|
|
((py_obj_base_t*)base)->u_tuple_list.items[i] = value;
|
|
} else if (IS_O(base, O_MAP)) {
|
|
// map store
|
|
py_map_lookup(base, index, true)->value = value;
|
|
} else {
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
py_obj_t rt_getiter(py_obj_t o_in) {
|
|
if (IS_O(o_in, O_GEN_INSTANCE)) {
|
|
return o_in;
|
|
} else if (IS_O(o_in, O_RANGE)) {
|
|
py_obj_base_t *o = o_in;
|
|
return py_obj_new_range_iterator(o->u_range.start, o->u_range.stop, o->u_range.step);
|
|
} else if (IS_O(o_in, O_TUPLE)) {
|
|
return py_obj_new_tuple_iterator(o_in, 0);
|
|
} else if (IS_O(o_in, O_LIST)) {
|
|
return py_obj_new_list_iterator(o_in, 0);
|
|
} else {
|
|
nlr_jump(py_obj_new_exception_2(q_TypeError, "'%s' object is not iterable", py_obj_get_type_str(o_in), NULL));
|
|
}
|
|
}
|
|
|
|
py_obj_t rt_iternext(py_obj_t o_in) {
|
|
if (IS_O(o_in, O_GEN_INSTANCE)) {
|
|
py_obj_base_t *self = o_in;
|
|
//py_obj_base_t *fun = self->u_gen_instance.state[0];
|
|
//assert(fun->kind == O_FUN_BC);
|
|
bool yield = py_execute_byte_code_2(&self->u_gen_instance.ip, &self->u_gen_instance.state[1], &self->u_gen_instance.sp);
|
|
if (yield) {
|
|
return *self->u_gen_instance.sp;
|
|
} else {
|
|
if (*self->u_gen_instance.sp == py_const_none) {
|
|
return py_const_stop_iteration;
|
|
} else {
|
|
// TODO return StopIteration with value *self->u_gen_instance.sp
|
|
return py_const_stop_iteration;
|
|
}
|
|
}
|
|
|
|
} else if (IS_O(o_in, O_RANGE_IT)) {
|
|
py_obj_base_t *o = o_in;
|
|
if ((o->u_range_it.step > 0 && o->u_range_it.cur < o->u_range_it.stop) || (o->u_range_it.step < 0 && o->u_range_it.cur > o->u_range_it.stop)) {
|
|
py_obj_t o_out = TO_SMALL_INT(o->u_range_it.cur);
|
|
o->u_range_it.cur += o->u_range_it.step;
|
|
return o_out;
|
|
} else {
|
|
return py_const_stop_iteration;
|
|
}
|
|
|
|
} else if (IS_O(o_in, O_TUPLE_IT) || IS_O(o_in, O_LIST_IT)) {
|
|
py_obj_base_t *o = o_in;
|
|
if (o->u_tuple_list_it.cur < o->u_tuple_list_it.obj->u_tuple_list.len) {
|
|
py_obj_t o_out = o->u_tuple_list_it.obj->u_tuple_list.items[o->u_tuple_list_it.cur];
|
|
o->u_tuple_list_it.cur += 1;
|
|
return o_out;
|
|
} else {
|
|
return py_const_stop_iteration;
|
|
}
|
|
|
|
} else {
|
|
nlr_jump(py_obj_new_exception_2(q_TypeError, "? '%s' object is not iterable", py_obj_get_type_str(o_in), NULL));
|
|
}
|
|
}
|
|
|
|
// these must correspond to the respective enum
|
|
void *const rt_fun_table[RT_F_NUMBER_OF] = {
|
|
rt_load_const_dec,
|
|
rt_load_const_str,
|
|
rt_load_name,
|
|
rt_load_global,
|
|
rt_load_build_class,
|
|
rt_load_attr,
|
|
rt_load_method,
|
|
rt_store_name,
|
|
rt_store_attr,
|
|
rt_store_subscr,
|
|
rt_is_true,
|
|
rt_unary_op,
|
|
rt_build_tuple,
|
|
rt_build_list,
|
|
rt_list_append,
|
|
rt_build_map,
|
|
rt_store_map,
|
|
rt_build_set,
|
|
rt_store_set,
|
|
rt_make_function_from_id,
|
|
rt_call_function_n,
|
|
rt_call_method_n,
|
|
rt_binary_op,
|
|
rt_compare_op,
|
|
rt_getiter,
|
|
rt_iternext,
|
|
};
|
|
|
|
/*
|
|
void rt_f_vector(rt_fun_kind_t fun_kind) {
|
|
(rt_f_table[fun_kind])();
|
|
}
|
|
*/
|
|
|
|
// temporary way of making C modules
|
|
// hack: use class to mimic a module
|
|
|
|
py_obj_t py_module_new(void) {
|
|
py_obj_base_t *o = m_new(py_obj_base_t, 1);
|
|
o->kind = O_CLASS;
|
|
o->u_class.locals = py_map_new(MAP_QSTR, 0);
|
|
return o;
|
|
}
|