// in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args // py_xxx functions are safer and can be called by anyone // note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this #include #include #include #include #include #include #include "nlr.h" #include "misc.h" #include "mpyconfig.h" #include "runtime.h" #include "bc.h" #if 0 // print debugging info #define DEBUG_PRINT (1) #define WRITE_NATIVE (1) #define DEBUG_printf(args...) printf(args) #define DEBUG_OP_printf(args...) printf(args) #else // don't print debugging info #define DEBUG_printf(args...) (void)0 #define DEBUG_OP_printf(args...) (void)0 #endif typedef machine_int_t py_small_int_t; #define IS_O(o, k) (((((py_small_int_t)(o)) & 1) == 0) && (((py_obj_base_t*)(o))->kind == (k))) #define IS_SMALL_INT(o) (((py_small_int_t)(o)) & 1) #define FROM_SMALL_INT(o) (((py_small_int_t)(o)) >> 1) #define TO_SMALL_INT(o) ((py_obj_t)(((o) << 1) | 1)) #if MICROPY_ENABLE_FLOAT typedef machine_float_t py_float_t; #endif typedef enum { O_CONST, O_STR, #if MICROPY_ENABLE_FLOAT O_FLOAT, O_COMPLEX, #endif O_EXCEPTION_0, O_EXCEPTION_N, O_RANGE, O_RANGE_IT, O_FUN_0, O_FUN_1, O_FUN_2, O_FUN_N, O_FUN_VAR, O_FUN_BC, O_FUN_ASM, O_GEN_WRAP, O_GEN_INSTANCE, O_BOUND_METH, O_TUPLE, O_LIST, O_TUPLE_IT, O_LIST_IT, O_SET, O_MAP, O_CLASS, O_OBJ, O_USER, } py_obj_kind_t; typedef enum { MAP_QSTR, MAP_PY_OBJ, } py_map_kind_t; typedef struct _py_map_elem_t { py_obj_t key; py_obj_t value; } py_map_elem_t; typedef struct _py_map_t { struct { py_map_kind_t kind : 1; machine_uint_t used : (8 * BYTES_PER_WORD - 1); }; machine_uint_t alloc; py_map_elem_t *table; } py_map_t; typedef struct _py_obj_base_t py_obj_base_t; struct _py_obj_base_t { py_obj_kind_t kind; union { const char *id; qstr u_str; #if MICROPY_ENABLE_FLOAT py_float_t u_float; // for O_FLOAT struct { // for O_COMPLEX py_float_t real; py_float_t imag; } u_complex; #endif struct { // for O_EXCEPTION_0 qstr id; } u_exc0; struct { // for O_EXCEPTION_N // TODO make generic object or something qstr id; int n_args; const void **args; } u_exc_n; struct { // for O_RANGE // TODO make generic object or something machine_int_t start; machine_int_t stop; machine_int_t step; } u_range; struct { // for O_RANGE_IT // TODO make generic object or something machine_int_t cur; machine_int_t stop; machine_int_t step; } u_range_it; struct { // for O_FUN_[012N], O_FUN_VAR int n_args; void *fun; } u_fun; struct { // for O_FUN_BC int n_args; uint n_state; byte *code; } u_fun_bc; struct { // for O_FUN_ASM int n_args; void *fun; } u_fun_asm; struct { // for O_GEN_WRAP int n_state; py_obj_base_t *fun; } u_gen_wrap; struct { // for O_GEN_INSTANCE py_obj_t *state; const byte *ip; py_obj_t *sp; } u_gen_instance; struct { // for O_BOUND_METH py_obj_t meth; py_obj_t self; } u_bound_meth; struct { // for O_TUPLE, O_LIST machine_uint_t alloc; machine_uint_t len; py_obj_t *items; } u_tuple_list; struct { // for O_TUPLE_IT, O_LIST_IT py_obj_base_t *obj; machine_uint_t cur; } u_tuple_list_it; struct { // for O_SET machine_uint_t alloc; machine_uint_t used; py_obj_t *table; } u_set; py_map_t u_map; // for O_MAP struct { // for O_CLASS py_map_t *locals; } u_class; struct { // for O_OBJ py_obj_base_t *class; // points to a O_CLASS object py_map_t *members; } u_obj; struct { // for O_USER const py_user_info_t *info; machine_uint_t data1; machine_uint_t data2; } u_user; }; }; static qstr q_append; static qstr q_join; static qstr q_format; static qstr q___build_class__; static qstr q___next__; static qstr q_AttributeError; static qstr q_IndexError; static qstr q_KeyError; static qstr q_NameError; static qstr q_TypeError; static qstr q_SyntaxError; py_obj_t py_const_none; py_obj_t py_const_false; py_obj_t py_const_true; py_obj_t py_const_stop_iteration; // locals and globals need to be pointers because they can be the same in outer module scope static py_map_t *map_locals; static py_map_t *map_globals; static py_map_t map_builtins; // approximatelly doubling primes; made with Mathematica command: Table[Prime[Floor[(1.7)^n]], {n, 3, 24}] static int doubling_primes[] = {7, 19, 43, 89, 179, 347, 647, 1229, 2297, 4243, 7829, 14347, 26017, 47149, 84947, 152443, 273253, 488399, 869927, 1547173, 2745121, 4861607}; int get_doubling_prime_greater_or_equal_to(int x) { for (int i = 0; i < sizeof(doubling_primes) / sizeof(int); i++) { if (doubling_primes[i] >= x) { return doubling_primes[i]; } } // ran out of primes in the table! // return something sensible, at least make it odd return x | 1; } void py_map_init(py_map_t *map, py_map_kind_t kind, int n) { map->kind = kind; map->used = 0; map->alloc = get_doubling_prime_greater_or_equal_to(n + 1); map->table = m_new0(py_map_elem_t, map->alloc); } py_map_t *py_map_new(py_map_kind_t kind, int n) { py_map_t *map = m_new(py_map_t, 1); py_map_init(map, kind, n); return map; } machine_int_t py_obj_hash(py_obj_t o_in) { if (o_in == py_const_false) { return 0; // needs to hash to same as the integer 0, since False==0 } else if (o_in == py_const_true) { return 1; // needs to hash to same as the integer 1, since True==1 } else if (IS_SMALL_INT(o_in)) { return FROM_SMALL_INT(o_in); } else if (IS_O(o_in, O_CONST)) { return (machine_int_t)o_in; } else if (IS_O(o_in, O_STR)) { return ((py_obj_base_t*)o_in)->u_str; } else { assert(0); return 0; } } // this function implements the '==' operator (and so the inverse of '!=') // from the python language reference: // "The objects need not have the same type. If both are numbers, they are converted // to a common type. Otherwise, the == and != operators always consider objects of // different types to be unequal." // note also that False==0 and True==1 are true expressions bool py_obj_equal(py_obj_t o1, py_obj_t o2) { if (o1 == o2) { return true; } else if (IS_SMALL_INT(o1) || IS_SMALL_INT(o2)) { if (IS_SMALL_INT(o1) && IS_SMALL_INT(o2)) { return false; } else { if (IS_SMALL_INT(o2)) { py_obj_t temp = o1; o1 = o2; o2 = temp; } // o1 is the SMALL_INT, o2 is not py_small_int_t val = FROM_SMALL_INT(o1); if (o2 == py_const_false) { return val == 0; } else if (o2 == py_const_true) { return val == 1; } else { return false; } } } else if (IS_O(o1, O_STR) && IS_O(o2, O_STR)) { return ((py_obj_base_t*)o1)->u_str == ((py_obj_base_t*)o2)->u_str; } else { assert(0); return false; } } py_map_elem_t* py_map_lookup_helper(py_map_t *map, py_obj_t index, bool add_if_not_found) { bool is_map_py_obj = (map->kind == MAP_PY_OBJ); machine_uint_t hash; if (is_map_py_obj) { hash = py_obj_hash(index); } else { hash = (machine_uint_t)index; } uint pos = hash % map->alloc; for (;;) { py_map_elem_t *elem = &map->table[pos]; if (elem->key == NULL) { // not in table if (add_if_not_found) { if (map->used + 1 >= map->alloc) { // not enough room in table, rehash it int old_alloc = map->alloc; py_map_elem_t *old_table = map->table; map->alloc = get_doubling_prime_greater_or_equal_to(map->alloc + 1); map->used = 0; map->table = m_new0(py_map_elem_t, map->alloc); for (int i = 0; i < old_alloc; i++) { if (old_table[i].key != NULL) { py_map_lookup_helper(map, old_table[i].key, true)->value = old_table[i].value; } } m_free(old_table); // restart the search for the new element pos = hash % map->alloc; } else { map->used += 1; elem->key = index; return elem; } } else { return NULL; } } else if (elem->key == index || (is_map_py_obj && py_obj_equal(elem->key, index))) { // found it /* it seems CPython does not replace the index; try x={True:'true'};x[1]='one';x if (add_if_not_found) { elem->key = index; } */ return elem; } else { // not yet found, keep searching in this table pos = (pos + 1) % map->alloc; } } } py_map_elem_t* py_qstr_map_lookup(py_map_t *map, qstr index, bool add_if_not_found) { py_obj_t o = (py_obj_t)(machine_uint_t)index; return py_map_lookup_helper(map, o, add_if_not_found); } py_map_elem_t* py_map_lookup(py_obj_t o, py_obj_t index, bool add_if_not_found) { assert(IS_O(o, O_MAP)); return py_map_lookup_helper(&((py_obj_base_t *)o)->u_map, index, add_if_not_found); } static bool fit_small_int(py_small_int_t o) { return true; } py_obj_t py_obj_new_int(machine_int_t value) { return TO_SMALL_INT(value); } py_obj_t py_obj_new_const(const char *id) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_CONST; o->id = id; return (py_obj_t)o; } py_obj_t py_obj_new_str(qstr qstr) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_STR; o->u_str = qstr; return (py_obj_t)o; } #if MICROPY_ENABLE_FLOAT py_obj_t py_obj_new_float(py_float_t val) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_FLOAT; o->u_float = val; return (py_obj_t)o; } py_obj_t py_obj_new_complex(py_float_t real, py_float_t imag) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_COMPLEX; o->u_complex.real = real; o->u_complex.imag = imag; return (py_obj_t)o; } #endif py_obj_t py_obj_new_exception_0(qstr id) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_EXCEPTION_0; o->u_exc0.id = id; return (py_obj_t)o; } py_obj_t py_obj_new_exception_2(qstr id, const char *fmt, const char *s1, const char *s2) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_EXCEPTION_N; o->u_exc_n.id = id; o->u_exc_n.n_args = 3; o->u_exc_n.args = m_new(const void*, 3); o->u_exc_n.args[0] = fmt; o->u_exc_n.args[1] = s1; o->u_exc_n.args[2] = s2; return (py_obj_t)o; } // range is a class and instances are immutable sequence objects py_obj_t py_obj_new_range(int start, int stop, int step) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_RANGE; o->u_range.start = start; o->u_range.stop = stop; o->u_range.step = step; return o; } py_obj_t py_obj_new_range_iterator(int cur, int stop, int step) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_RANGE_IT; o->u_range_it.cur = cur; o->u_range_it.stop = stop; o->u_range_it.step = step; return o; } py_obj_t py_obj_new_tuple_iterator(py_obj_base_t *tuple, int cur) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_TUPLE_IT; o->u_tuple_list_it.obj = tuple; o->u_tuple_list_it.cur = cur; return o; } py_obj_t py_obj_new_list_iterator(py_obj_base_t *list, int cur) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_LIST_IT; o->u_tuple_list_it.obj = list; o->u_tuple_list_it.cur = cur; return o; } py_obj_t py_obj_new_user(const py_user_info_t *info, machine_uint_t data1, machine_uint_t data2) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_USER; // TODO should probably parse the info to turn strings to qstr's, and wrap functions in O_FUN_N objects // that'll take up some memory. maybe we can lazily do the O_FUN_N: leave it a ptr to a C function, and // only when the method is looked-up do we change that to the O_FUN_N object. o->u_user.info = info; o->u_user.data1 = data1; o->u_user.data2 = data2; return o; } const char *py_obj_get_type_str(py_obj_t o_in) { if (IS_SMALL_INT(o_in)) { return "int"; } else { py_obj_base_t *o = o_in; switch (o->kind) { case O_CONST: if (o == py_const_none) { return "NoneType"; } else { return "bool"; } case O_STR: return "str"; #if MICROPY_ENABLE_FLOAT case O_FLOAT: return "float"; #endif case O_FUN_0: case O_FUN_1: case O_FUN_2: case O_FUN_N: case O_FUN_VAR: case O_FUN_BC: return "function"; case O_GEN_INSTANCE: return "generator"; case O_TUPLE: return "tuple"; case O_LIST: return "list"; case O_TUPLE_IT: return "tuple_iterator"; case O_LIST_IT: return "list_iterator"; case O_SET: return "set"; case O_MAP: return "dict"; case O_OBJ: { py_map_elem_t *qn = py_qstr_map_lookup(o->u_obj.class->u_class.locals, qstr_from_str_static("__qualname__"), false); assert(qn != NULL); assert(IS_O(qn->value, O_STR)); return qstr_str(((py_obj_base_t*)qn->value)->u_str); } case O_USER: return o->u_user.info->type_name; default: assert(0); return "UnknownType"; } } } int rt_is_true(py_obj_t arg) { DEBUG_OP_printf("is true %p\n", arg); if (IS_SMALL_INT(arg)) { if (FROM_SMALL_INT(arg) == 0) { return 0; } else { return 1; } } else if (arg == py_const_none) { return 0; } else if (arg == py_const_false) { return 0; } else if (arg == py_const_true) { return 1; } else { assert(0); return 0; } } machine_int_t py_obj_get_int(py_obj_t arg) { if (arg == py_const_false) { return 0; } else if (arg == py_const_true) { return 1; } else if (IS_SMALL_INT(arg)) { return FROM_SMALL_INT(arg); } else { assert(0); return 0; } } #if MICROPY_ENABLE_FLOAT machine_float_t py_obj_get_float(py_obj_t arg) { if (arg == py_const_false) { return 0; } else if (arg == py_const_true) { return 1; } else if (IS_SMALL_INT(arg)) { return FROM_SMALL_INT(arg); } else if (IS_O(arg, O_FLOAT)) { return ((py_obj_base_t*)arg)->u_float; } else { assert(0); return 0; } } void py_obj_get_complex(py_obj_t arg, py_float_t *real, py_float_t *imag) { if (arg == py_const_false) { *real = 0; *imag = 0; } else if (arg == py_const_true) { *real = 1; *imag = 0; } else if (IS_SMALL_INT(arg)) { *real = FROM_SMALL_INT(arg); *imag = 0; } else if (IS_O(arg, O_FLOAT)) { *real = ((py_obj_base_t*)arg)->u_float; *imag = 0; } else if (IS_O(arg, O_COMPLEX)) { *real = ((py_obj_base_t*)arg)->u_complex.real; *imag = ((py_obj_base_t*)arg)->u_complex.imag; } else { assert(0); *real = 0; *imag = 0; } } #endif qstr py_obj_get_qstr(py_obj_t arg) { if (IS_O(arg, O_STR)) { return ((py_obj_base_t*)arg)->u_str; } else { assert(0); return 0; } } py_obj_t *py_obj_get_array_fixed_n(py_obj_t o_in, machine_int_t n) { if (IS_O(o_in, O_TUPLE) || IS_O(o_in, O_LIST)) { py_obj_base_t *o = o_in; if (o->u_tuple_list.len != n) { nlr_jump(py_obj_new_exception_2(q_IndexError, "requested length %d but object has length %d", (void*)n, (void*)o->u_tuple_list.len)); } return o->u_tuple_list.items; } else { nlr_jump(py_obj_new_exception_2(q_TypeError, "object '%s' is not a tuple or list", py_obj_get_type_str(o_in), NULL)); } } void py_user_get_data(py_obj_t o, machine_uint_t *data1, machine_uint_t *data2) { assert(IS_O(o, O_USER)); if (data1 != NULL) { *data1 = ((py_obj_base_t*)o)->u_user.data1; } if (data2 != NULL) { *data2 = ((py_obj_base_t*)o)->u_user.data2; } } void py_user_set_data(py_obj_t o, machine_uint_t data1, machine_uint_t data2) { assert(IS_O(o, O_USER)); ((py_obj_base_t*)o)->u_user.data1 = data1; ((py_obj_base_t*)o)->u_user.data2 = data2; } void printf_wrapper(void *env, const char *fmt, ...) { va_list args; va_start(args, fmt); vprintf(fmt, args); va_end(args); } void vstr_printf_wrapper(void *env, const char *fmt, ...) { va_list args; va_start(args, fmt); vstr_vprintf(env, fmt, args); va_end(args); } void py_obj_print_helper(void (*print)(void *env, const char *fmt, ...), void *env, py_obj_t o_in) { if (IS_SMALL_INT(o_in)) { print(env, "%d", (int)FROM_SMALL_INT(o_in)); } else { py_obj_base_t *o = o_in; switch (o->kind) { case O_CONST: print(env, "%s", o->id); break; case O_STR: // TODO need to escape chars etc print(env, "'%s'", qstr_str(o->u_str)); break; #if MICROPY_ENABLE_FLOAT case O_FLOAT: print(env, "%.8g", o->u_float); break; case O_COMPLEX: if (o->u_complex.real == 0) { print(env, "%.8gj", o->u_complex.imag); } else { print(env, "(%.8g+%.8gj)", o->u_complex.real, o->u_complex.imag); } break; #endif case O_EXCEPTION_0: print(env, "%s", qstr_str(o->u_exc0.id)); break; case O_EXCEPTION_N: print(env, "%s: ", qstr_str(o->u_exc_n.id)); print(env, o->u_exc_n.args[0], o->u_exc_n.args[1], o->u_exc_n.args[2]); break; case O_GEN_INSTANCE: print(env, "", o); break; case O_TUPLE: print(env, "("); for (int i = 0; i < o->u_tuple_list.len; i++) { if (i > 0) { print(env, ", "); } py_obj_print_helper(print, env, o->u_tuple_list.items[i]); } if (o->u_tuple_list.len == 1) { print(env, ","); } print(env, ")"); break; case O_LIST: print(env, "["); for (int i = 0; i < o->u_tuple_list.len; i++) { if (i > 0) { print(env, ", "); } py_obj_print_helper(print, env, o->u_tuple_list.items[i]); } print(env, "]"); break; case O_SET: { bool first = true; print(env, "{"); for (int i = 0; i < o->u_set.alloc; i++) { if (o->u_set.table[i] != NULL) { if (!first) { print(env, ", "); } first = false; py_obj_print_helper(print, env, o->u_set.table[i]); } } print(env, "}"); break; } case O_MAP: { bool first = true; print(env, "{"); for (int i = 0; i < o->u_map.alloc; i++) { if (o->u_map.table[i].key != NULL) { if (!first) { print(env, ", "); } first = false; py_obj_print_helper(print, env, o->u_map.table[i].key); print(env, ": "); py_obj_print_helper(print, env, o->u_map.table[i].value); } } print(env, "}"); break; } case O_USER: o->u_user.info->print(o_in); break; default: print(env, "", o->kind); assert(0); } } } py_obj_t rt_str_join(py_obj_t self_in, py_obj_t arg) { assert(IS_O(self_in, O_STR)); py_obj_base_t *self = self_in; int required_len = strlen(qstr_str(self->u_str)); // process arg, count required chars if (!IS_O(arg, O_TUPLE) && !IS_O(arg, O_LIST)) { goto bad_arg; } py_obj_base_t *tuple_list = arg; for (int i = 0; i < tuple_list->u_tuple_list.len; i++) { if (!IS_O(tuple_list->u_tuple_list.items[i], O_STR)) { goto bad_arg; } required_len += strlen(qstr_str(((py_obj_base_t*)tuple_list->u_tuple_list.items[i])->u_str)); } // make joined string char *joined_str = m_new(char, required_len + 1); joined_str[0] = 0; for (int i = 0; i < tuple_list->u_tuple_list.len; i++) { const char *s2 = qstr_str(((py_obj_base_t*)tuple_list->u_tuple_list.items[i])->u_str); if (i > 0) { strcat(joined_str, qstr_str(self->u_str)); } strcat(joined_str, s2); } return py_obj_new_str(qstr_from_str_take(joined_str)); bad_arg: nlr_jump(py_obj_new_exception_2(q_TypeError, "?str.join expecting a list of str's", NULL, NULL)); } py_obj_t rt_str_format(int n_args, const py_obj_t* args) { assert(IS_O(args[0], O_STR)); py_obj_base_t *self = args[0]; const char *str = qstr_str(self->u_str); int arg_i = 1; vstr_t *vstr = vstr_new(); for (; *str; str++) { if (*str == '{') { str++; if (*str == '{') { vstr_add_char(vstr, '{'); } else if (*str == '}') { if (arg_i >= n_args) { nlr_jump(py_obj_new_exception_2(q_IndexError, "tuple index out of range", NULL, NULL)); } py_obj_print_helper(vstr_printf_wrapper, vstr, args[arg_i]); arg_i++; } } else { vstr_add_char(vstr, *str); } } return py_obj_new_str(qstr_from_str_take(vstr->buf)); } py_obj_t rt_list_append(py_obj_t self_in, py_obj_t arg) { assert(IS_O(self_in, O_LIST)); py_obj_base_t *self = self_in; if (self->u_tuple_list.len >= self->u_tuple_list.alloc) { self->u_tuple_list.alloc *= 2; self->u_tuple_list.items = m_renew(py_obj_t, self->u_tuple_list.items, self->u_tuple_list.alloc); } self->u_tuple_list.items[self->u_tuple_list.len++] = arg; return py_const_none; // return None, as per CPython } py_obj_t rt_gen_instance_next(py_obj_t self_in) { py_obj_t ret = rt_iternext(self_in); if (ret == py_const_stop_iteration) { nlr_jump(py_obj_new_exception_0(qstr_from_str_static("StopIteration"))); } else { return ret; } } typedef enum { PY_CODE_NONE, PY_CODE_BYTE, PY_CODE_NATIVE, PY_CODE_INLINE_ASM, } py_code_kind_t; typedef struct _py_code_t { py_code_kind_t kind; int n_args; int n_locals; int n_stack; bool is_generator; union { struct { byte *code; uint len; } u_byte; struct { py_fun_t fun; } u_native; struct { void *fun; } u_inline_asm; }; } py_code_t; static int next_unique_code_id; static py_code_t *unique_codes; py_obj_t fun_str_join; py_obj_t fun_str_format; py_obj_t fun_list_append; py_obj_t fun_gen_instance_next; py_obj_t py_builtin___repl_print__(py_obj_t o) { if (o != py_const_none) { py_obj_print(o); printf("\n"); } return py_const_none; } py_obj_t py_builtin_print(int n_args, const py_obj_t* args) { for (int i = 0; i < n_args; i++) { if (i > 0) { printf(" "); } if (IS_O(args[i], O_STR)) { // special case, print string raw printf("%s", qstr_str(((py_obj_base_t*)args[i])->u_str)); } else { // print the object Python style py_obj_print(args[i]); } } printf("\n"); return py_const_none; } py_obj_t py_builtin_len(py_obj_t o_in) { py_small_int_t len = 0; if (IS_O(o_in, O_STR)) { py_obj_base_t *o = o_in; len = strlen(qstr_str(o->u_str)); } else if (IS_O(o_in, O_TUPLE) || IS_O(o_in, O_LIST)) { py_obj_base_t *o = o_in; len = o->u_tuple_list.len; } else if (IS_O(o_in, O_MAP)) { py_obj_base_t *o = o_in; len = o->u_map.used; } else { assert(0); } return TO_SMALL_INT(len); } py_obj_t py_builtin_abs(py_obj_t o_in) { if (IS_SMALL_INT(o_in)) { py_small_int_t val = FROM_SMALL_INT(o_in); if (val < 0) { val = -val; } return TO_SMALL_INT(val); #if MICROPY_ENABLE_FLOAT } else if (IS_O(o_in, O_FLOAT)) { py_obj_base_t *o = o_in; // TODO check for NaN etc if (o->u_float < 0) { return py_obj_new_float(-o->u_float); } else { return o_in; } } else if (IS_O(o_in, O_COMPLEX)) { py_obj_base_t *o = o_in; return py_obj_new_float(machine_sqrt(o->u_complex.real*o->u_complex.real + o->u_complex.imag*o->u_complex.imag)); #endif } else { assert(0); return py_const_none; } } py_obj_t py_builtin___build_class__(py_obj_t o_class_fun, py_obj_t o_class_name) { // we differ from CPython: we set the new __locals__ object here py_map_t *old_locals = map_locals; py_map_t *class_locals = py_map_new(MAP_QSTR, 0); map_locals = class_locals; // call the class code rt_call_function_1(o_class_fun, (py_obj_t)0xdeadbeef); // restore old __locals__ object map_locals = old_locals; // create and return the new class py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_CLASS; o->u_class.locals = class_locals; return o; } py_obj_t py_builtin_range(py_obj_t o_arg) { return py_obj_new_range(0, py_obj_get_int(o_arg), 1); } #ifdef WRITE_NATIVE FILE *fp_native = NULL; #endif void rt_init(void) { q_append = qstr_from_str_static("append"); q_join = qstr_from_str_static("join"); q_format = qstr_from_str_static("format"); q___build_class__ = qstr_from_str_static("__build_class__"); q___next__ = qstr_from_str_static("__next__"); q_AttributeError = qstr_from_str_static("AttributeError"); q_IndexError = qstr_from_str_static("IndexError"); q_KeyError = qstr_from_str_static("KeyError"); q_NameError = qstr_from_str_static("NameError"); q_TypeError = qstr_from_str_static("TypeError"); q_SyntaxError = qstr_from_str_static("SyntaxError"); py_const_none = py_obj_new_const("None"); py_const_false = py_obj_new_const("False"); py_const_true = py_obj_new_const("True"); py_const_stop_iteration = py_obj_new_const("StopIteration"); // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New()) map_locals = map_globals = py_map_new(MAP_QSTR, 1); py_qstr_map_lookup(map_globals, qstr_from_str_static("__name__"), true)->value = py_obj_new_str(qstr_from_str_static("__main__")); py_map_init(&map_builtins, MAP_QSTR, 3); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("__repl_print__"), true)->value = rt_make_function_1(py_builtin___repl_print__); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("print"), true)->value = rt_make_function_var(0, py_builtin_print); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("len"), true)->value = rt_make_function_1(py_builtin_len); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("abs"), true)->value = rt_make_function_1(py_builtin_abs); py_qstr_map_lookup(&map_builtins, q___build_class__, true)->value = rt_make_function_2(py_builtin___build_class__); py_qstr_map_lookup(&map_builtins, qstr_from_str_static("range"), true)->value = rt_make_function_1(py_builtin_range); next_unique_code_id = 2; // 1 is reserved for the __main__ module scope unique_codes = NULL; fun_str_join = rt_make_function_2(rt_str_join); fun_str_format = rt_make_function_var(1, rt_str_format); fun_list_append = rt_make_function_2(rt_list_append); fun_gen_instance_next = rt_make_function_1(rt_gen_instance_next); #ifdef WRITE_NATIVE fp_native = fopen("out-native", "wb"); #endif } void rt_deinit(void) { #ifdef WRITE_NATIVE if (fp_native != NULL) { fclose(fp_native); } #endif } int rt_get_unique_code_id(bool is_main_module) { if (is_main_module) { return 1; } else { return next_unique_code_id++; } } static void alloc_unique_codes(void) { if (unique_codes == NULL) { unique_codes = m_new(py_code_t, next_unique_code_id + 10); // XXX hack until we fix the REPL allocation problem for (int i = 0; i < next_unique_code_id; i++) { unique_codes[i].kind = PY_CODE_NONE; } } } void rt_assign_byte_code(int unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_stack, bool is_generator) { alloc_unique_codes(); assert(unique_code_id < next_unique_code_id); unique_codes[unique_code_id].kind = PY_CODE_BYTE; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_locals = n_locals; unique_codes[unique_code_id].n_stack = n_stack; unique_codes[unique_code_id].is_generator = is_generator; unique_codes[unique_code_id].u_byte.code = code; unique_codes[unique_code_id].u_byte.len = len; DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d\n", unique_code_id, code, len, n_args); } void rt_assign_native_code(int unique_code_id, py_fun_t fun, uint len, int n_args) { alloc_unique_codes(); assert(1 <= unique_code_id && unique_code_id < next_unique_code_id); unique_codes[unique_code_id].kind = PY_CODE_NATIVE; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_locals = 0; unique_codes[unique_code_id].n_stack = 0; unique_codes[unique_code_id].is_generator = false; unique_codes[unique_code_id].u_native.fun = fun; #ifdef DEBUG_PRINT DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code for (int i = 0; i < 128 && i < len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", fun_data[i]); } DEBUG_printf("\n"); #ifdef WRITE_NATIVE if (fp_native != NULL) { fwrite(fun_data, len, 1, fp_native); fflush(fp_native); } #endif #endif } void rt_assign_inline_asm_code(int unique_code_id, py_fun_t fun, uint len, int n_args) { alloc_unique_codes(); assert(1 <= unique_code_id && unique_code_id < next_unique_code_id); unique_codes[unique_code_id].kind = PY_CODE_INLINE_ASM; unique_codes[unique_code_id].n_args = n_args; unique_codes[unique_code_id].n_locals = 0; unique_codes[unique_code_id].n_stack = 0; unique_codes[unique_code_id].is_generator = false; unique_codes[unique_code_id].u_inline_asm.fun = fun; #ifdef DEBUG_PRINT DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args); byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code for (int i = 0; i < 128 && i < len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", fun_data[i]); } DEBUG_printf("\n"); #ifdef WRITE_NATIVE if (fp_native != NULL) { fwrite(fun_data, len, 1, fp_native); } #endif #endif } bool py_obj_is_callable(py_obj_t o_in) { if (IS_SMALL_INT(o_in)) { return false; } else { py_obj_base_t *o = o_in; switch (o->kind) { case O_FUN_0: case O_FUN_1: case O_FUN_2: case O_FUN_VAR: case O_FUN_N: case O_FUN_BC: case O_FUN_ASM: // what about O_CLASS, and an O_OBJ that has a __call__ method? return true; default: return false; } } } void py_obj_print(py_obj_t o_in) { py_obj_print_helper(printf_wrapper, NULL, o_in); } #define PARSE_DEC_IN_INTG (1) #define PARSE_DEC_IN_FRAC (2) #define PARSE_DEC_IN_EXP (3) py_obj_t rt_load_const_dec(qstr qstr) { #if MICROPY_ENABLE_FLOAT DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); const char *s = qstr_str(qstr); int in = PARSE_DEC_IN_INTG; py_float_t dec_val = 0; bool exp_neg = false; int exp_val = 0; int exp_extra = 0; bool imag = false; for (; *s; s++) { int dig = *s; if ('0' <= dig && dig <= '9') { dig -= '0'; if (in == PARSE_DEC_IN_EXP) { exp_val = 10 * exp_val + dig; } else { dec_val = 10 * dec_val + dig; if (in == PARSE_DEC_IN_FRAC) { exp_extra -= 1; } } } else if (in == PARSE_DEC_IN_INTG && dig == '.') { in = PARSE_DEC_IN_FRAC; } else if (in != PARSE_DEC_IN_EXP && (dig == 'E' || dig == 'e')) { in = PARSE_DEC_IN_EXP; if (s[1] == '+') { s++; } else if (s[1] == '-') { s++; exp_neg = true; } } else if (dig == 'J' || dig == 'j') { s++; imag = true; break; } else { // unknown character break; } } if (*s != 0) { nlr_jump(py_obj_new_exception_2(q_SyntaxError, "invalid syntax for number", NULL, NULL)); } if (exp_neg) { exp_val = -exp_val; } exp_val += exp_extra; for (; exp_val > 0; exp_val--) { dec_val *= 10; } for (; exp_val < 0; exp_val++) { dec_val *= 0.1; } if (imag) { return py_obj_new_complex(0, dec_val); } else { return py_obj_new_float(dec_val); } #else nlr_jump(py_obj_new_exception_2(q_SyntaxError, "decimal numbers not supported", NULL, NULL)); #endif } py_obj_t rt_load_const_str(qstr qstr) { DEBUG_OP_printf("load '%s'\n", qstr_str(qstr)); return py_obj_new_str(qstr); } py_obj_t rt_load_name(qstr qstr) { // logic: search locals, globals, builtins DEBUG_OP_printf("load name %s\n", qstr_str(qstr)); py_map_elem_t *elem = py_qstr_map_lookup(map_locals, qstr, false); if (elem == NULL) { elem = py_qstr_map_lookup(map_globals, qstr, false); if (elem == NULL) { elem = py_qstr_map_lookup(&map_builtins, qstr, false); if (elem == NULL) { nlr_jump(py_obj_new_exception_2(q_NameError, "name '%s' is not defined", qstr_str(qstr), NULL)); } } } return elem->value; } py_obj_t rt_load_global(qstr qstr) { // logic: search globals, builtins DEBUG_OP_printf("load global %s\n", qstr_str(qstr)); py_map_elem_t *elem = py_qstr_map_lookup(map_globals, qstr, false); if (elem == NULL) { elem = py_qstr_map_lookup(&map_builtins, qstr, false); if (elem == NULL) { nlr_jump(py_obj_new_exception_2(q_NameError, "name '%s' is not defined", qstr_str(qstr), NULL)); } } return elem->value; } py_obj_t rt_load_build_class(void) { DEBUG_OP_printf("load_build_class\n"); py_map_elem_t *elem = py_qstr_map_lookup(&map_builtins, q___build_class__, false); if (elem == NULL) { printf("name doesn't exist: __build_class__\n"); assert(0); } return elem->value; } void rt_store_name(qstr qstr, py_obj_t obj) { DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj); py_qstr_map_lookup(map_locals, qstr, true)->value = obj; } void rt_store_global(qstr qstr, py_obj_t obj) { DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj); py_qstr_map_lookup(map_globals, qstr, true)->value = obj; } py_obj_t rt_unary_op(int op, py_obj_t arg) { DEBUG_OP_printf("unary %d %p\n", op, arg); if (IS_SMALL_INT(arg)) { py_small_int_t val = FROM_SMALL_INT(arg); switch (op) { case RT_UNARY_OP_NOT: if (val != 0) { return py_const_true;} else { return py_const_false; } case RT_UNARY_OP_POSITIVE: break; case RT_UNARY_OP_NEGATIVE: val = -val; break; case RT_UNARY_OP_INVERT: val = ~val; break; default: assert(0); val = 0; } if (fit_small_int(val)) { return TO_SMALL_INT(val); } #if MICROPY_ENABLE_FLOAT } else if (IS_O(arg, O_FLOAT)) { py_float_t val = py_obj_get_float(arg); switch (op) { case RT_UNARY_OP_NOT: if (val != 0) { return py_const_true;} else { return py_const_false; } case RT_UNARY_OP_POSITIVE: break; case RT_UNARY_OP_NEGATIVE: val = -val; break; case RT_UNARY_OP_INVERT: nlr_jump(py_obj_new_exception_2(q_TypeError, "bad operand type for unary ~: 'float'", NULL, NULL)); default: assert(0); val = 0; } return py_obj_new_float(val); #endif } assert(0); return py_const_none; } uint get_index(py_obj_base_t *base, py_obj_t index) { // assumes base is O_TUPLE or O_LIST // TODO False and True are considered 0 and 1 for indexing purposes int len = base->u_tuple_list.len; if (IS_SMALL_INT(index)) { int i = FROM_SMALL_INT(index); if (i < 0) { i += len; } if (i < 0 || i >= len) { nlr_jump(py_obj_new_exception_2(q_IndexError, "%s index out of range", py_obj_get_type_str(base), NULL)); } return i; } else { nlr_jump(py_obj_new_exception_2(q_TypeError, "%s indices must be integers, not %s", py_obj_get_type_str(base), py_obj_get_type_str(index))); } } py_obj_t rt_binary_op(int op, py_obj_t lhs, py_obj_t rhs) { DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs); if (op == RT_BINARY_OP_SUBSCR) { if (IS_O(lhs, O_STR)) { // string access // XXX a hack! const char *str = qstr_str(((py_obj_base_t*)lhs)->u_str); return py_obj_new_int(str[FROM_SMALL_INT(rhs)]); } else if ((IS_O(lhs, O_TUPLE) || IS_O(lhs, O_LIST))) { // tuple/list load uint index = get_index(lhs, rhs); return ((py_obj_base_t*)lhs)->u_tuple_list.items[index]; } else if (IS_O(lhs, O_MAP)) { // map load py_map_elem_t *elem = py_map_lookup(lhs, rhs, false); if (elem == NULL) { nlr_jump(py_obj_new_exception_2(q_KeyError, "", NULL, NULL)); } else { return elem->value; } } else { assert(0); } } else if (IS_SMALL_INT(lhs) && IS_SMALL_INT(rhs)) { py_small_int_t lhs_val = FROM_SMALL_INT(lhs); py_small_int_t rhs_val = FROM_SMALL_INT(rhs); switch (op) { case RT_BINARY_OP_OR: case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break; case RT_BINARY_OP_XOR: case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break; case RT_BINARY_OP_AND: case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break; case RT_BINARY_OP_LSHIFT: case RT_BINARY_OP_INPLACE_LSHIFT: lhs_val <<= rhs_val; break; case RT_BINARY_OP_RSHIFT: case RT_BINARY_OP_INPLACE_RSHIFT: lhs_val >>= rhs_val; break; case RT_BINARY_OP_ADD: case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; case RT_BINARY_OP_SUBTRACT: case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; case RT_BINARY_OP_MULTIPLY: case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break; case RT_BINARY_OP_FLOOR_DIVIDE: case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break; #if MICROPY_ENABLE_FLOAT case RT_BINARY_OP_TRUE_DIVIDE: case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return py_obj_new_float((py_float_t)lhs_val / (py_float_t)rhs_val); #endif case RT_BINARY_OP_POWER: case RT_BINARY_OP_INPLACE_POWER: // TODO if (rhs_val == 2) { lhs_val = lhs_val * lhs_val; break; } default: printf("%d\n", op); assert(0); } if (fit_small_int(lhs_val)) { return TO_SMALL_INT(lhs_val); } #if MICROPY_ENABLE_FLOAT } else if (IS_O(lhs, O_COMPLEX) || IS_O(rhs, O_COMPLEX)) { py_float_t lhs_real, lhs_imag, rhs_real, rhs_imag; py_obj_get_complex(lhs, &lhs_real, &lhs_imag); py_obj_get_complex(rhs, &rhs_real, &rhs_imag); switch (op) { case RT_BINARY_OP_ADD: case RT_BINARY_OP_INPLACE_ADD: lhs_real += rhs_real; lhs_imag += rhs_imag; break; case RT_BINARY_OP_SUBTRACT: case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_real -= rhs_real; lhs_imag -= rhs_imag; break; case RT_BINARY_OP_MULTIPLY: case RT_BINARY_OP_INPLACE_MULTIPLY: { py_float_t real = lhs_real * rhs_real - lhs_imag * rhs_imag; lhs_imag = lhs_real * rhs_imag + lhs_imag * rhs_real; lhs_real = real; break; } /* TODO floor(?) the value case RT_BINARY_OP_FLOOR_DIVIDE: case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: val = lhs_val / rhs_val; break; */ /* TODO case RT_BINARY_OP_TRUE_DIVIDE: case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: val = lhs_val / rhs_val; break; */ default: printf("%d\n", op); assert(0); } return py_obj_new_complex(lhs_real, lhs_imag); } else if (IS_O(lhs, O_FLOAT) || IS_O(rhs, O_FLOAT)) { py_float_t lhs_val = py_obj_get_float(lhs); py_float_t rhs_val = py_obj_get_float(rhs); switch (op) { case RT_BINARY_OP_ADD: case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; case RT_BINARY_OP_SUBTRACT: case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; case RT_BINARY_OP_MULTIPLY: case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break; /* TODO floor(?) the value case RT_BINARY_OP_FLOOR_DIVIDE: case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: val = lhs_val / rhs_val; break; */ case RT_BINARY_OP_TRUE_DIVIDE: case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: lhs_val /= rhs_val; break; default: printf("%d\n", op); assert(0); } return py_obj_new_float(lhs_val); #endif } else if (IS_O(lhs, O_STR) && IS_O(rhs, O_STR)) { const char *lhs_str = qstr_str(((py_obj_base_t*)lhs)->u_str); const char *rhs_str = qstr_str(((py_obj_base_t*)rhs)->u_str); char *val; switch (op) { case RT_BINARY_OP_ADD: case RT_BINARY_OP_INPLACE_ADD: val = m_new(char, strlen(lhs_str) + strlen(rhs_str) + 1); strcpy(val, lhs_str); strcat(val, rhs_str); break; default: printf("%d\n", op); assert(0); val = NULL; } return py_obj_new_str(qstr_from_str_take(val)); } assert(0); return py_const_none; } py_obj_t rt_compare_op(int op, py_obj_t lhs, py_obj_t rhs) { DEBUG_OP_printf("compare %d %p %p\n", op, lhs, rhs); // deal with == and != if (op == RT_COMPARE_OP_EQUAL || op == RT_COMPARE_OP_NOT_EQUAL) { if (py_obj_equal(lhs, rhs)) { if (op == RT_COMPARE_OP_EQUAL) { return py_const_true; } else { return py_const_false; } } else { if (op == RT_COMPARE_OP_EQUAL) { return py_const_false; } else { return py_const_true; } } } // deal with small ints if (IS_SMALL_INT(lhs) && IS_SMALL_INT(rhs)) { py_small_int_t lhs_val = FROM_SMALL_INT(lhs); py_small_int_t rhs_val = FROM_SMALL_INT(rhs); int cmp; switch (op) { case RT_COMPARE_OP_LESS: cmp = lhs_val < rhs_val; break; case RT_COMPARE_OP_MORE: cmp = lhs_val > rhs_val; break; case RT_COMPARE_OP_LESS_EQUAL: cmp = lhs_val <= rhs_val; break; case RT_COMPARE_OP_MORE_EQUAL: cmp = lhs_val >= rhs_val; break; default: assert(0); cmp = 0; } if (cmp) { return py_const_true; } else { return py_const_false; } } #if MICROPY_ENABLE_FLOAT // deal with floats if (IS_O(lhs, O_FLOAT) || IS_O(rhs, O_FLOAT)) { py_float_t lhs_val = py_obj_get_float(lhs); py_float_t rhs_val = py_obj_get_float(rhs); int cmp; switch (op) { case RT_COMPARE_OP_LESS: cmp = lhs_val < rhs_val; break; case RT_COMPARE_OP_MORE: cmp = lhs_val > rhs_val; break; case RT_COMPARE_OP_LESS_EQUAL: cmp = lhs_val <= rhs_val; break; case RT_COMPARE_OP_MORE_EQUAL: cmp = lhs_val >= rhs_val; break; default: assert(0); cmp = 0; } if (cmp) { return py_const_true; } else { return py_const_false; } } #endif // not implemented assert(0); return py_const_none; } py_obj_t rt_make_function_from_id(int unique_code_id) { DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id); if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) { // illegal code id return py_const_none; } py_code_t *c = &unique_codes[unique_code_id]; py_obj_base_t *o = m_new(py_obj_base_t, 1); switch (c->kind) { case PY_CODE_BYTE: o->kind = O_FUN_BC; o->u_fun_bc.n_args = c->n_args; o->u_fun_bc.n_state = c->n_locals + c->n_stack; o->u_fun_bc.code = c->u_byte.code; break; case PY_CODE_NATIVE: switch (c->n_args) { case 0: o->kind = O_FUN_0; break; case 1: o->kind = O_FUN_1; break; case 2: o->kind = O_FUN_2; break; default: assert(0); } o->u_fun.fun = c->u_native.fun; break; case PY_CODE_INLINE_ASM: o->kind = O_FUN_ASM; o->u_fun_asm.n_args = c->n_args; o->u_fun_asm.fun = c->u_inline_asm.fun; break; default: assert(0); } // check for generator functions and if so wrap in generator object if (c->is_generator) { py_obj_base_t *o2 = m_new(py_obj_base_t, 1); o2->kind = O_GEN_WRAP; // we have at least 3 locals so the bc can write back fast[0,1,2] safely; should improve how this is done o2->u_gen_wrap.n_state = (c->n_locals < 3 ? 3 : c->n_locals) + c->n_stack; o2->u_gen_wrap.fun = o; o = o2; } return o; } py_obj_t rt_make_function_0(py_fun_0_t fun) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_FUN_0; o->u_fun.fun = fun; return o; } py_obj_t rt_make_function_1(py_fun_1_t fun) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_FUN_1; o->u_fun.fun = fun; return o; } py_obj_t rt_make_function_2(py_fun_2_t fun) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_FUN_2; o->u_fun.fun = fun; return o; } py_obj_t rt_make_function(int n_args, py_fun_t code) { // assumes code is a pointer to a py_fun_t (i think this is safe...) py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_FUN_N; o->u_fun.n_args = n_args; o->u_fun.fun = code; return o; } py_obj_t rt_make_function_var(int n_fixed_args, py_fun_var_t f) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_FUN_VAR; o->u_fun.n_args = n_fixed_args; o->u_fun.fun = f; return o; } py_obj_t rt_call_function_0(py_obj_t fun) { return rt_call_function_n(fun, 0, NULL); } py_obj_t rt_call_function_1(py_obj_t fun, py_obj_t arg) { return rt_call_function_n(fun, 1, &arg); } py_obj_t rt_call_function_2(py_obj_t fun, py_obj_t arg1, py_obj_t arg2) { py_obj_t args[2]; args[1] = arg1; args[0] = arg2; return rt_call_function_n(fun, 2, args); } typedef machine_uint_t (*inline_asm_fun_0_t)(); typedef machine_uint_t (*inline_asm_fun_1_t)(machine_uint_t); typedef machine_uint_t (*inline_asm_fun_2_t)(machine_uint_t, machine_uint_t); typedef machine_uint_t (*inline_asm_fun_3_t)(machine_uint_t, machine_uint_t, machine_uint_t); // convert a Python object to a sensible value for inline asm machine_uint_t rt_convert_obj_for_inline_asm(py_obj_t obj) { // TODO for byte_array, pass pointer to the array if (IS_SMALL_INT(obj)) { return FROM_SMALL_INT(obj); } else if (obj == py_const_none) { return 0; } else if (obj == py_const_false) { return 0; } else if (obj == py_const_true) { return 1; } else { py_obj_base_t *o = obj; switch (o->kind) { case O_STR: // pointer to the string (it's probably constant though!) return (machine_uint_t)qstr_str(o->u_str); #if MICROPY_ENABLE_FLOAT case O_FLOAT: // convert float to int (could also pass in float registers) return (machine_int_t)o->u_float; #endif case O_TUPLE: case O_LIST: // pointer to start of tuple/list (could pass length, but then could use len(x) for that) return (machine_uint_t)o->u_tuple_list.items; default: // just pass along a pointer to the object return (machine_uint_t)obj; } } } // convert a return value from inline asm to a sensible Python object py_obj_t rt_convert_val_from_inline_asm(machine_uint_t val) { return TO_SMALL_INT(val); } // args are in reverse order in the array py_obj_t rt_call_function_n(py_obj_t fun, int n_args, const py_obj_t *args) { int n_args_fun = 0; if (IS_O(fun, O_FUN_0)) { py_obj_base_t *o = fun; if (n_args != 0) { n_args_fun = 0; goto bad_n_args; } DEBUG_OP_printf("calling native %p()\n", o->u_fun.fun); return ((py_fun_0_t)o->u_fun.fun)(); } else if (IS_O(fun, O_FUN_1)) { py_obj_base_t *o = fun; if (n_args != 1) { n_args_fun = 1; goto bad_n_args; } DEBUG_OP_printf("calling native %p(%p)\n", o->u_fun.fun, args[0]); return ((py_fun_1_t)o->u_fun.fun)(args[0]); } else if (IS_O(fun, O_FUN_2)) { py_obj_base_t *o = fun; if (n_args != 2) { n_args_fun = 2; goto bad_n_args; } DEBUG_OP_printf("calling native %p(%p, %p)\n", o->u_fun.fun, args[1], args[0]); return ((py_fun_2_t)o->u_fun.fun)(args[1], args[0]); // TODO O_FUN_N } else if (IS_O(fun, O_FUN_VAR)) { py_obj_base_t *o = fun; if (n_args < o->u_fun.n_args) { nlr_jump(py_obj_new_exception_2(q_TypeError, "() missing %d required positional arguments: ", (const char*)(machine_int_t)(o->u_fun.n_args - n_args), NULL)); } // TODO really the args need to be passed in as a Python tuple, as the form f(*[1,2]) can be used to pass var args py_obj_t *args_ordered = m_new(py_obj_t, n_args); for (int i = 0; i < n_args; i++) { args_ordered[i] = args[n_args - i - 1]; } py_obj_t res = ((py_fun_var_t)o->u_fun.fun)(n_args, args_ordered); m_free(args_ordered); return res; } else if (IS_O(fun, O_FUN_BC)) { py_obj_base_t *o = fun; if (n_args != o->u_fun_bc.n_args) { n_args_fun = o->u_fun_bc.n_args; goto bad_n_args; } DEBUG_OP_printf("calling byte code %p(n_args=%d)\n", o->u_fun_bc.code, n_args); return py_execute_byte_code(o->u_fun_bc.code, args, n_args, o->u_fun_bc.n_state); } else if (IS_O(fun, O_FUN_ASM)) { py_obj_base_t *o = fun; if (n_args != o->u_fun_asm.n_args) { n_args_fun = o->u_fun_asm.n_args; goto bad_n_args; } DEBUG_OP_printf("calling inline asm %p(n_args=%d)\n", o->u_fun_asm.fun, n_args); machine_uint_t ret; if (n_args == 0) { ret = ((inline_asm_fun_0_t)o->u_fun_asm.fun)(); } else if (n_args == 1) { ret = ((inline_asm_fun_1_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[0])); } else if (n_args == 2) { ret = ((inline_asm_fun_2_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[1]), rt_convert_obj_for_inline_asm(args[0])); } else if (n_args == 3) { ret = ((inline_asm_fun_3_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[2]), rt_convert_obj_for_inline_asm(args[1]), rt_convert_obj_for_inline_asm(args[0])); } else { assert(0); ret = 0; } return rt_convert_val_from_inline_asm(ret); } else if (IS_O(fun, O_GEN_WRAP)) { py_obj_base_t *o = fun; py_obj_base_t *o_fun = o->u_gen_wrap.fun; assert(o_fun->kind == O_FUN_BC); // TODO if (n_args != o_fun->u_fun_bc.n_args) { n_args_fun = o_fun->u_fun_bc.n_args; goto bad_n_args; } py_obj_t *state = m_new(py_obj_t, 1 + o->u_gen_wrap.n_state); // put function object at first slot in state (to keep u_gen_instance small) state[0] = o_fun; // init args for (int i = 0; i < n_args; i++) { state[1 + i] = args[n_args - 1 - i]; } py_obj_base_t *o2 = m_new(py_obj_base_t, 1); o2->kind = O_GEN_INSTANCE; o2->u_gen_instance.state = state; o2->u_gen_instance.ip = o_fun->u_fun_bc.code; o2->u_gen_instance.sp = state + o->u_gen_wrap.n_state; return o2; } else if (IS_O(fun, O_BOUND_METH)) { py_obj_base_t *o = fun; DEBUG_OP_printf("calling bound method %p(self=%p, n_args=%d)\n", o->u_bound_meth.meth, o->u_bound_meth.self, n_args); if (n_args == 0) { return rt_call_function_n(o->u_bound_meth.meth, 1, &o->u_bound_meth.self); } else if (n_args == 1) { py_obj_t args2[2]; args2[1] = o->u_bound_meth.self; args2[0] = args[0]; return rt_call_function_n(o->u_bound_meth.meth, 2, args2); } else { // TODO not implemented assert(0); return py_const_none; //return rt_call_function_2(o->u_bound_meth.meth, n_args + 1, o->u_bound_meth.self + args); } } else if (IS_O(fun, O_CLASS)) { // instantiate an instance of a class if (n_args != 0) { n_args_fun = 0; goto bad_n_args; } DEBUG_OP_printf("instantiate object of class %p with no args\n", fun); py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_OBJ; o->u_obj.class = fun; o->u_obj.members = py_map_new(MAP_QSTR, 0); return o; } else { printf("fun %p %d\n", fun, ((py_obj_base_t*)fun)->kind); assert(0); return py_const_none; } bad_n_args: nlr_jump(py_obj_new_exception_2(q_TypeError, "function takes %d positional arguments but %d were given", (const char*)(machine_int_t)n_args_fun, (const char*)(machine_int_t)n_args)); } // args contains: arg(n_args-1) arg(n_args-2) ... arg(0) self/NULL fun // if n_args==0 then there are only self/NULL and fun py_obj_t rt_call_method_n(int n_args, const py_obj_t *args) { DEBUG_OP_printf("call method %p(self=%p, n_args=%d)\n", args[n_args + 1], args[n_args], n_args); return rt_call_function_n(args[n_args + 1], n_args + ((args[n_args] == NULL) ? 0 : 1), args); } // items are in reverse order py_obj_t rt_build_tuple(int n_args, py_obj_t *items) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_TUPLE; o->u_tuple_list.alloc = n_args < 4 ? 4 : n_args; o->u_tuple_list.len = n_args; o->u_tuple_list.items = m_new(py_obj_t, o->u_tuple_list.alloc); for (int i = 0; i < n_args; i++) { o->u_tuple_list.items[i] = items[n_args - i - 1]; } return o; } // items are in reverse order py_obj_t rt_build_list(int n_args, py_obj_t *items) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_LIST; o->u_tuple_list.alloc = n_args < 4 ? 4 : n_args; o->u_tuple_list.len = n_args; o->u_tuple_list.items = m_new(py_obj_t, o->u_tuple_list.alloc); for (int i = 0; i < n_args; i++) { o->u_tuple_list.items[i] = items[n_args - i - 1]; } return o; } py_obj_t py_set_lookup(py_obj_t o_in, py_obj_t index, bool add_if_not_found) { assert(IS_O(o_in, O_SET)); py_obj_base_t *o = o_in; int hash = py_obj_hash(index); int pos = hash % o->u_set.alloc; for (;;) { py_obj_t elem = o->u_set.table[pos]; if (elem == NULL) { // not in table if (add_if_not_found) { if (o->u_set.used + 1 >= o->u_set.alloc) { // not enough room in table, rehash it int old_alloc = o->u_set.alloc; py_obj_t *old_table = o->u_set.table; o->u_set.alloc = get_doubling_prime_greater_or_equal_to(o->u_set.alloc + 1); o->u_set.used = 0; o->u_set.table = m_new(py_obj_t, o->u_set.alloc); for (int i = 0; i < old_alloc; i++) { if (old_table[i] != NULL) { py_set_lookup(o, old_table[i], true); } } m_free(old_table); // restart the search for the new element pos = hash % o->u_set.alloc; } else { o->u_set.used += 1; o->u_set.table[pos] = index; return index; } } else { return NULL; } } else if (py_obj_equal(elem, index)) { // found it return elem; } else { // not yet found, keep searching in this table pos = (pos + 1) % o->u_set.alloc; } } } py_obj_t rt_build_set(int n_args, py_obj_t *items) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_SET; o->u_set.alloc = get_doubling_prime_greater_or_equal_to(n_args + 1); o->u_set.used = 0; o->u_set.table = m_new(py_obj_t, o->u_set.alloc); for (int i = 0; i < o->u_set.alloc; i++) { o->u_set.table[i] = NULL; } for (int i = 0; i < n_args; i++) { py_set_lookup(o, items[i], true); } return o; } py_obj_t rt_store_set(py_obj_t set, py_obj_t item) { py_set_lookup(set, item, true); return set; } py_obj_t rt_build_map(int n_args) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_MAP; py_map_init(&o->u_map, MAP_PY_OBJ, n_args); return o; } py_obj_t rt_store_map(py_obj_t map, py_obj_t key, py_obj_t value) { assert(IS_O(map, O_MAP)); // should always be py_map_lookup(map, key, true)->value = value; return map; } py_obj_t build_bound_method(py_obj_t self, py_obj_t meth) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_BOUND_METH; o->u_bound_meth.meth = meth; o->u_bound_meth.self = self; return o; } py_obj_t rt_load_attr(py_obj_t base, qstr attr) { DEBUG_OP_printf("load attr %s\n", qstr_str(attr)); if (IS_O(base, O_LIST) && attr == q_append) { return build_bound_method(base, fun_list_append); } else if (IS_O(base, O_CLASS)) { py_obj_base_t *o = base; py_map_elem_t *elem = py_qstr_map_lookup(o->u_class.locals, attr, false); if (elem == NULL) { goto no_attr; } return elem->value; } else if (IS_O(base, O_OBJ)) { // logic: look in obj members then class locals (TODO check this against CPython) py_obj_base_t *o = base; py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.members, attr, false); if (elem != NULL) { // object member, always treated as a value return elem->value; } elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false); if (elem != NULL) { if (py_obj_is_callable(elem->value)) { // class member is callable so build a bound method return build_bound_method(base, elem->value); } else { // class member is a value, so just return that value return elem->value; } } goto no_attr; } no_attr: nlr_jump(py_obj_new_exception_2(q_AttributeError, "'%s' object has no attribute '%s'", py_obj_get_type_str(base), qstr_str(attr))); } void rt_load_method(py_obj_t base, qstr attr, py_obj_t *dest) { DEBUG_OP_printf("load method %s\n", qstr_str(attr)); if (IS_O(base, O_STR)) { if (attr == q_join) { dest[1] = fun_str_join; dest[0] = base; return; } else if (attr == q_format) { dest[1] = fun_str_format; dest[0] = base; return; } } else if (IS_O(base, O_GEN_INSTANCE) && attr == q___next__) { dest[1] = fun_gen_instance_next; dest[0] = base; return; } else if (IS_O(base, O_LIST) && attr == q_append) { dest[1] = fun_list_append; dest[0] = base; return; } else if (IS_O(base, O_OBJ)) { // logic: look in obj members then class locals (TODO check this against CPython) py_obj_base_t *o = base; py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.members, attr, false); if (elem != NULL) { // object member, always treated as a value dest[1] = elem->value; dest[0] = NULL; return; } elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false); if (elem != NULL) { if (py_obj_is_callable(elem->value)) { // class member is callable so build a bound method dest[1] = elem->value; dest[0] = base; return; } else { // class member is a value, so just return that value dest[1] = elem->value; dest[0] = NULL; return; } } goto no_attr; } else if (IS_O(base, O_USER)) { py_obj_base_t *o = base; const py_user_method_t *meth = &o->u_user.info->methods[0]; for (; meth->name != NULL; meth++) { if (strcmp(meth->name, qstr_str(attr)) == 0) { if (meth->kind == 0) { dest[1] = rt_make_function_1(meth->fun); } else if (meth->kind == 1) { dest[1] = rt_make_function_2(meth->fun); } else { assert(0); } dest[0] = base; return; } } } no_attr: dest[1] = rt_load_attr(base, attr); dest[0] = NULL; } void rt_store_attr(py_obj_t base, qstr attr, py_obj_t value) { DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value); if (IS_O(base, O_CLASS)) { // TODO CPython allows STORE_ATTR to a class, but is this the correct implementation? py_obj_base_t *o = base; py_qstr_map_lookup(o->u_class.locals, attr, true)->value = value; } else if (IS_O(base, O_OBJ)) { // logic: look in class locals (no add) then obj members (add) (TODO check this against CPython) py_obj_base_t *o = base; py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false); if (elem != NULL) { elem->value = value; } else { py_qstr_map_lookup(o->u_obj.members, attr, true)->value = value; } } else { printf("?AttributeError: '%s' object has no attribute '%s'\n", py_obj_get_type_str(base), qstr_str(attr)); assert(0); } } void rt_store_subscr(py_obj_t base, py_obj_t index, py_obj_t value) { DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value); if (IS_O(base, O_LIST)) { // list store uint i = get_index(base, index); ((py_obj_base_t*)base)->u_tuple_list.items[i] = value; } else if (IS_O(base, O_MAP)) { // map store py_map_lookup(base, index, true)->value = value; } else { assert(0); } } py_obj_t rt_getiter(py_obj_t o_in) { if (IS_O(o_in, O_GEN_INSTANCE)) { return o_in; } else if (IS_O(o_in, O_RANGE)) { py_obj_base_t *o = o_in; return py_obj_new_range_iterator(o->u_range.start, o->u_range.stop, o->u_range.step); } else if (IS_O(o_in, O_TUPLE)) { return py_obj_new_tuple_iterator(o_in, 0); } else if (IS_O(o_in, O_LIST)) { return py_obj_new_list_iterator(o_in, 0); } else { nlr_jump(py_obj_new_exception_2(q_TypeError, "'%s' object is not iterable", py_obj_get_type_str(o_in), NULL)); } } py_obj_t rt_iternext(py_obj_t o_in) { if (IS_O(o_in, O_GEN_INSTANCE)) { py_obj_base_t *self = o_in; //py_obj_base_t *fun = self->u_gen_instance.state[0]; //assert(fun->kind == O_FUN_BC); bool yield = py_execute_byte_code_2(&self->u_gen_instance.ip, &self->u_gen_instance.state[1], &self->u_gen_instance.sp); if (yield) { return *self->u_gen_instance.sp; } else { if (*self->u_gen_instance.sp == py_const_none) { return py_const_stop_iteration; } else { // TODO return StopIteration with value *self->u_gen_instance.sp return py_const_stop_iteration; } } } else if (IS_O(o_in, O_RANGE_IT)) { py_obj_base_t *o = o_in; if ((o->u_range_it.step > 0 && o->u_range_it.cur < o->u_range_it.stop) || (o->u_range_it.step < 0 && o->u_range_it.cur > o->u_range_it.stop)) { py_obj_t o_out = TO_SMALL_INT(o->u_range_it.cur); o->u_range_it.cur += o->u_range_it.step; return o_out; } else { return py_const_stop_iteration; } } else if (IS_O(o_in, O_TUPLE_IT) || IS_O(o_in, O_LIST_IT)) { py_obj_base_t *o = o_in; if (o->u_tuple_list_it.cur < o->u_tuple_list_it.obj->u_tuple_list.len) { py_obj_t o_out = o->u_tuple_list_it.obj->u_tuple_list.items[o->u_tuple_list_it.cur]; o->u_tuple_list_it.cur += 1; return o_out; } else { return py_const_stop_iteration; } } else { nlr_jump(py_obj_new_exception_2(q_TypeError, "? '%s' object is not iterable", py_obj_get_type_str(o_in), NULL)); } } // these must correspond to the respective enum void *const rt_fun_table[RT_F_NUMBER_OF] = { rt_load_const_dec, rt_load_const_str, rt_load_name, rt_load_global, rt_load_build_class, rt_load_attr, rt_load_method, rt_store_name, rt_store_attr, rt_store_subscr, rt_is_true, rt_unary_op, rt_build_tuple, rt_build_list, rt_list_append, rt_build_map, rt_store_map, rt_build_set, rt_store_set, rt_make_function_from_id, rt_call_function_n, rt_call_method_n, rt_binary_op, rt_compare_op, rt_getiter, rt_iternext, }; /* void rt_f_vector(rt_fun_kind_t fun_kind) { (rt_f_table[fun_kind])(); } */ // temporary way of making C modules // hack: use class to mimic a module py_obj_t py_module_new(void) { py_obj_base_t *o = m_new(py_obj_base_t, 1); o->kind = O_CLASS; o->u_class.locals = py_map_new(MAP_QSTR, 0); return o; }