circuitpython/py/objfun.c
Scott Shawcroft 7d8dac9211
Refine iMX RT memory layout and add three boards
Introduces a way to place CircuitPython code and data into
tightly coupled memory (TCM) which is accessible by the CPU in a
single cycle. It also frees up room in the corresponding cache for
intermittent data. Loading from external flash is slow!

The data cache is also now enabled.

Adds support for the iMX RT 1021 chip. Adds three new boards:
* iMX RT 1020 EVK
* iMX RT 1060 EVK
* Teensy 4.0

Related to #2492, #2472 and #2477. Fixes #2475.
2020-01-17 17:36:08 -08:00

595 lines
21 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2014 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include <assert.h>
#include "py/objtuple.h"
#include "py/objfun.h"
#include "py/runtime.h"
#include "py/bc.h"
#include "py/stackctrl.h"
#include "supervisor/linker.h"
#if MICROPY_DEBUG_VERBOSE // print debugging info
#define DEBUG_PRINT (1)
#else // don't print debugging info
#define DEBUG_PRINT (0)
#define DEBUG_printf(...) (void)0
#endif
// Note: the "name" entry in mp_obj_type_t for a function type must be
// MP_QSTR_function because it is used to determine if an object is of generic
// function type.
/******************************************************************************/
/* builtin functions */
STATIC mp_obj_t fun_builtin_0_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
(void)args;
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_0));
mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
mp_arg_check_num_kw_array(n_args, n_kw, 0, 0, false);
return self->fun._0();
}
const mp_obj_type_t mp_type_fun_builtin_0 = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_builtin_0_call,
.unary_op = mp_generic_unary_op,
};
STATIC mp_obj_t fun_builtin_1_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_1));
mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
mp_arg_check_num_kw_array(n_args, n_kw, 1, 1, false);
return self->fun._1(args[0]);
}
const mp_obj_type_t mp_type_fun_builtin_1 = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_builtin_1_call,
.unary_op = mp_generic_unary_op,
};
STATIC mp_obj_t fun_builtin_2_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_2));
mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
mp_arg_check_num_kw_array(n_args, n_kw, 2, 2, false);
return self->fun._2(args[0], args[1]);
}
const mp_obj_type_t mp_type_fun_builtin_2 = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_builtin_2_call,
.unary_op = mp_generic_unary_op,
};
STATIC mp_obj_t fun_builtin_3_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_3));
mp_obj_fun_builtin_fixed_t *self = MP_OBJ_TO_PTR(self_in);
mp_arg_check_num_kw_array(n_args, n_kw, 3, 3, false);
return self->fun._3(args[0], args[1], args[2]);
}
const mp_obj_type_t mp_type_fun_builtin_3 = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_builtin_3_call,
.unary_op = mp_generic_unary_op,
};
STATIC mp_obj_t fun_builtin_var_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin_var));
mp_obj_fun_builtin_var_t *self = MP_OBJ_TO_PTR(self_in);
// check number of arguments
mp_arg_check_num_kw_array(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw);
if (self->is_kw) {
// function allows keywords
// we create a map directly from the given args array
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
return self->fun.kw(n_args, args, &kw_args);
} else {
// function takes a variable number of arguments, but no keywords
return self->fun.var(n_args, args);
}
}
const mp_obj_type_t mp_type_fun_builtin_var = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_builtin_var_call,
.unary_op = mp_generic_unary_op,
};
/******************************************************************************/
/* byte code functions */
qstr mp_obj_code_get_name(const byte *code_info) {
code_info = mp_decode_uint_skip(code_info); // skip code_info_size entry
#if MICROPY_PERSISTENT_CODE
return code_info[0] | (code_info[1] << 8);
#else
return mp_decode_uint_value(code_info);
#endif
}
#if MICROPY_EMIT_NATIVE
STATIC const mp_obj_type_t mp_type_fun_native;
#endif
qstr mp_obj_fun_get_name(mp_const_obj_t fun_in) {
const mp_obj_fun_bc_t *fun = MP_OBJ_TO_PTR(fun_in);
#if MICROPY_EMIT_NATIVE
if (fun->base.type == &mp_type_fun_native) {
// TODO native functions don't have name stored
return MP_QSTR_;
}
#endif
const byte *bc = fun->bytecode;
bc = mp_decode_uint_skip(bc); // skip n_state
bc = mp_decode_uint_skip(bc); // skip n_exc_stack
bc++; // skip scope_params
bc++; // skip n_pos_args
bc++; // skip n_kwonly_args
bc++; // skip n_def_pos_args
return mp_obj_code_get_name(bc);
}
#if MICROPY_CPYTHON_COMPAT
STATIC void fun_bc_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
(void)kind;
mp_obj_fun_bc_t *o = MP_OBJ_TO_PTR(o_in);
mp_printf(print, "<function %q at 0x%p>", mp_obj_fun_get_name(o_in), o);
}
#endif
#if DEBUG_PRINT
STATIC void dump_args(const mp_obj_t *a, size_t sz) {
DEBUG_printf("%p: ", a);
for (size_t i = 0; i < sz; i++) {
DEBUG_printf("%p ", a[i]);
}
DEBUG_printf("\n");
}
#else
#define dump_args(...) (void)0
#endif
// With this macro you can tune the maximum number of function state bytes
// that will be allocated on the stack. Any function that needs more
// than this will try to use the heap, with fallback to stack allocation.
#define VM_MAX_STATE_ON_STACK (11 * sizeof(mp_uint_t))
// Set this to 1 to enable a simple stack overflow check.
#define VM_DETECT_STACK_OVERFLOW (0)
#define DECODE_CODESTATE_SIZE(bytecode, n_state_out_var, state_size_out_var) \
{ \
/* bytecode prelude: state size and exception stack size */ \
n_state_out_var = mp_decode_uint_value(bytecode); \
size_t n_exc_stack = mp_decode_uint_value(mp_decode_uint_skip(bytecode)); \
\
n_state_out_var += VM_DETECT_STACK_OVERFLOW; \
\
/* state size in bytes */ \
state_size_out_var = n_state_out_var * sizeof(mp_obj_t) \
+ n_exc_stack * sizeof(mp_exc_stack_t); \
}
#define INIT_CODESTATE(code_state, _fun_bc, n_args, n_kw, args) \
code_state->fun_bc = _fun_bc; \
code_state->ip = 0; \
mp_setup_code_state(code_state, n_args, n_kw, args); \
code_state->old_globals = mp_globals_get();
#if MICROPY_STACKLESS
mp_code_state_t *mp_obj_fun_bc_prepare_codestate(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
MP_STACK_CHECK();
mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);
size_t n_state, state_size;
DECODE_CODESTATE_SIZE(self->bytecode, n_state, state_size);
mp_code_state_t *code_state;
#if MICROPY_ENABLE_PYSTACK
code_state = mp_pystack_alloc(sizeof(mp_code_state_t) + state_size);
#else
// If we use m_new_obj_var(), then on no memory, MemoryError will be
// raised. But this is not correct exception for a function call,
// RuntimeError should be raised instead. So, we use m_new_obj_var_maybe(),
// return NULL, then vm.c takes the needed action (either raise
// RuntimeError or fallback to stack allocation).
code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size);
if (!code_state) {
return NULL;
}
#endif
INIT_CODESTATE(code_state, self, n_args, n_kw, args);
// execute the byte code with the correct globals context
mp_globals_set(self->globals);
return code_state;
}
#endif
STATIC mp_obj_t PLACE_IN_ITCM(fun_bc_call)(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
MP_STACK_CHECK();
DEBUG_printf("Input n_args: " UINT_FMT ", n_kw: " UINT_FMT "\n", n_args, n_kw);
DEBUG_printf("Input pos args: ");
dump_args(args, n_args);
DEBUG_printf("Input kw args: ");
dump_args(args + n_args, n_kw * 2);
mp_obj_fun_bc_t *self = MP_OBJ_TO_PTR(self_in);
DEBUG_printf("Func n_def_args: %d\n", self->n_def_args);
size_t n_state, state_size;
DECODE_CODESTATE_SIZE(self->bytecode, n_state, state_size);
// allocate state for locals and stack
mp_code_state_t *code_state = NULL;
#if MICROPY_ENABLE_PYSTACK
code_state = mp_pystack_alloc(sizeof(mp_code_state_t) + state_size);
#else
if (state_size > VM_MAX_STATE_ON_STACK) {
code_state = m_new_obj_var_maybe(mp_code_state_t, byte, state_size);
}
if (code_state == NULL) {
code_state = alloca(sizeof(mp_code_state_t) + state_size);
state_size = 0; // indicate that we allocated using alloca
}
#endif
INIT_CODESTATE(code_state, self, n_args, n_kw, args);
// execute the byte code with the correct globals context
mp_globals_set(self->globals);
mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL);
mp_globals_set(code_state->old_globals);
#if VM_DETECT_STACK_OVERFLOW
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
if (code_state->sp < code_state->state) {
printf("VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state);
assert(0);
}
}
// We can't check the case when an exception is returned in state[n_state - 1]
// and there are no arguments, because in this case our detection slot may have
// been overwritten by the returned exception (which is allowed).
if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && self->n_pos_args + self->n_kwonly_args == 0)) {
// Just check to see that we have at least 1 null object left in the state.
bool overflow = true;
for (size_t i = 0; i < n_state - self->n_pos_args - self->n_kwonly_args; i++) {
if (code_state->state[i] == MP_OBJ_NULL) {
overflow = false;
break;
}
}
if (overflow) {
printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state);
assert(0);
}
}
#endif
mp_obj_t result;
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
// return value is in *sp
result = *code_state->sp;
} else {
// must be an exception because normal functions can't yield
assert(vm_return_kind == MP_VM_RETURN_EXCEPTION);
// return value is in fastn[0]==state[n_state - 1]
result = code_state->state[n_state - 1];
}
#if MICROPY_ENABLE_PYSTACK
mp_pystack_free(code_state);
#else
// free the state if it was allocated on the heap
if (state_size != 0) {
m_del_var(mp_code_state_t, byte, state_size, code_state);
}
#endif
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
return result;
} else { // MP_VM_RETURN_EXCEPTION
nlr_raise(result);
}
}
#if MICROPY_PY_FUNCTION_ATTRS
STATIC void fun_bc_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
if (dest[0] != MP_OBJ_NULL) {
// not load attribute
return;
}
if (attr == MP_QSTR___name__) {
dest[0] = MP_OBJ_NEW_QSTR(mp_obj_fun_get_name(self_in));
}
}
#endif
const mp_obj_type_t mp_type_fun_bc = {
{ &mp_type_type },
.name = MP_QSTR_function,
#if MICROPY_CPYTHON_COMPAT
.print = fun_bc_print,
#endif
.call = fun_bc_call,
.unary_op = mp_generic_unary_op,
#if MICROPY_PY_FUNCTION_ATTRS
.attr = fun_bc_attr,
#endif
};
mp_obj_t mp_obj_new_fun_bc(mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code, const mp_uint_t *const_table) {
size_t n_def_args = 0;
size_t n_extra_args = 0;
mp_obj_tuple_t *def_args = MP_OBJ_TO_PTR(def_args_in);
if (def_args_in != MP_OBJ_NULL) {
assert(MP_OBJ_IS_TYPE(def_args_in, &mp_type_tuple));
n_def_args = def_args->len;
n_extra_args = def_args->len;
}
if (def_kw_args != MP_OBJ_NULL) {
n_extra_args += 1;
}
mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
o->base.type = &mp_type_fun_bc;
o->globals = mp_globals_get();
o->bytecode = code;
o->const_table = const_table;
if (def_args != NULL) {
memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
}
if (def_kw_args != MP_OBJ_NULL) {
o->extra_args[n_def_args] = def_kw_args;
}
return MP_OBJ_FROM_PTR(o);
}
/******************************************************************************/
/* native functions */
#if MICROPY_EMIT_NATIVE
STATIC mp_obj_t fun_native_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
MP_STACK_CHECK();
mp_obj_fun_bc_t *self = self_in;
mp_call_fun_t fun = MICROPY_MAKE_POINTER_CALLABLE((void*)self->bytecode);
return fun(self_in, n_args, n_kw, args);
}
STATIC const mp_obj_type_t mp_type_fun_native = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_native_call,
.unary_op = mp_generic_unary_op,
};
mp_obj_t mp_obj_new_fun_native(mp_obj_t def_args_in, mp_obj_t def_kw_args, const void *fun_data, const mp_uint_t *const_table) {
mp_obj_fun_bc_t *o = mp_obj_new_fun_bc(def_args_in, def_kw_args, (const byte*)fun_data, const_table);
o->base.type = &mp_type_fun_native;
return o;
}
#endif // MICROPY_EMIT_NATIVE
/******************************************************************************/
/* viper functions */
#if MICROPY_EMIT_NATIVE
typedef struct _mp_obj_fun_viper_t {
mp_obj_base_t base;
size_t n_args;
void *fun_data; // GC must be able to trace this pointer
mp_uint_t type_sig;
} mp_obj_fun_viper_t;
typedef mp_uint_t (*viper_fun_0_t)(void);
typedef mp_uint_t (*viper_fun_1_t)(mp_uint_t);
typedef mp_uint_t (*viper_fun_2_t)(mp_uint_t, mp_uint_t);
typedef mp_uint_t (*viper_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
typedef mp_uint_t (*viper_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t);
STATIC mp_obj_t fun_viper_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_obj_fun_viper_t *self = self_in;
mp_arg_check_num_kw_array(n_args, n_kw, self->n_args, self->n_args, false);
void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
mp_uint_t ret;
if (n_args == 0) {
ret = ((viper_fun_0_t)fun)();
} else if (n_args == 1) {
ret = ((viper_fun_1_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4));
} else if (n_args == 2) {
ret = ((viper_fun_2_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8));
} else if (n_args == 3) {
ret = ((viper_fun_3_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 4), mp_convert_obj_to_native(args[1], self->type_sig >> 8), mp_convert_obj_to_native(args[2], self->type_sig >> 12));
} else {
// compiler allows at most 4 arguments
assert(n_args == 4);
ret = ((viper_fun_4_t)fun)(
mp_convert_obj_to_native(args[0], self->type_sig >> 4),
mp_convert_obj_to_native(args[1], self->type_sig >> 8),
mp_convert_obj_to_native(args[2], self->type_sig >> 12),
mp_convert_obj_to_native(args[3], self->type_sig >> 16)
);
}
return mp_convert_native_to_obj(ret, self->type_sig);
}
STATIC const mp_obj_type_t mp_type_fun_viper = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_viper_call,
.unary_op = mp_generic_unary_op,
};
mp_obj_t mp_obj_new_fun_viper(size_t n_args, void *fun_data, mp_uint_t type_sig) {
mp_obj_fun_viper_t *o = m_new_obj(mp_obj_fun_viper_t);
o->base.type = &mp_type_fun_viper;
o->n_args = n_args;
o->fun_data = fun_data;
o->type_sig = type_sig;
return o;
}
#endif // MICROPY_EMIT_NATIVE
/******************************************************************************/
/* inline assembler functions */
#if MICROPY_EMIT_INLINE_ASM
typedef struct _mp_obj_fun_asm_t {
mp_obj_base_t base;
size_t n_args;
void *fun_data; // GC must be able to trace this pointer
mp_uint_t type_sig;
} mp_obj_fun_asm_t;
typedef mp_uint_t (*inline_asm_fun_0_t)(void);
typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t);
typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t);
typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
typedef mp_uint_t (*inline_asm_fun_4_t)(mp_uint_t, mp_uint_t, mp_uint_t, mp_uint_t);
// convert a MicroPython object to a sensible value for inline asm
STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
// TODO for byte_array, pass pointer to the array
if (MP_OBJ_IS_SMALL_INT(obj)) {
return MP_OBJ_SMALL_INT_VALUE(obj);
} else if (obj == mp_const_none) {
return 0;
} else if (obj == mp_const_false) {
return 0;
} else if (obj == mp_const_true) {
return 1;
} else if (MP_OBJ_IS_TYPE(obj, &mp_type_int)) {
return mp_obj_int_get_truncated(obj);
} else if (MP_OBJ_IS_STR(obj)) {
// pointer to the string (it's probably constant though!)
size_t l;
return (mp_uint_t)mp_obj_str_get_data(obj, &l);
} else {
mp_obj_type_t *type = mp_obj_get_type(obj);
if (0) {
#if MICROPY_PY_BUILTINS_FLOAT
} else if (type == &mp_type_float) {
// convert float to int (could also pass in float registers)
return (mp_int_t)mp_obj_float_get(obj);
#endif
} else if (type == &mp_type_tuple || type == &mp_type_list) {
// pointer to start of tuple (could pass length, but then could use len(x) for that)
size_t len;
mp_obj_t *items;
mp_obj_get_array(obj, &len, &items);
return (mp_uint_t)items;
} else {
mp_buffer_info_t bufinfo;
if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) {
// supports the buffer protocol, return a pointer to the data
return (mp_uint_t)bufinfo.buf;
} else {
// just pass along a pointer to the object
return (mp_uint_t)obj;
}
}
}
}
STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_obj_fun_asm_t *self = self_in;
mp_arg_check_num_kw_array(n_args, n_kw, self->n_args, self->n_args, false);
void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
mp_uint_t ret;
if (n_args == 0) {
ret = ((inline_asm_fun_0_t)fun)();
} else if (n_args == 1) {
ret = ((inline_asm_fun_1_t)fun)(convert_obj_for_inline_asm(args[0]));
} else if (n_args == 2) {
ret = ((inline_asm_fun_2_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
} else if (n_args == 3) {
ret = ((inline_asm_fun_3_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
} else {
// compiler allows at most 4 arguments
assert(n_args == 4);
ret = ((inline_asm_fun_4_t)fun)(
convert_obj_for_inline_asm(args[0]),
convert_obj_for_inline_asm(args[1]),
convert_obj_for_inline_asm(args[2]),
convert_obj_for_inline_asm(args[3])
);
}
return mp_convert_native_to_obj(ret, self->type_sig);
}
STATIC const mp_obj_type_t mp_type_fun_asm = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_asm_call,
.unary_op = mp_generic_unary_op,
};
mp_obj_t mp_obj_new_fun_asm(size_t n_args, void *fun_data, mp_uint_t type_sig) {
mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
o->base.type = &mp_type_fun_asm;
o->n_args = n_args;
o->fun_data = fun_data;
o->type_sig = type_sig;
return o;
}
#endif // MICROPY_EMIT_INLINE_ASM