This makes it possible for cooperative multitasking systems to keep running
event loops during garbage collector operations.
For example, this can be used to ensure that a motor control loop runs
approximately each 5 ms. Without this hook, the loop time can jump to
about 15 ms.
Addresses #3475.
Signed-off-by: Laurens Valk <laurens@pybricks.com>
This is an stm32-specific feature that's accessed via the pyb module, so
not something that will be widely enabled.
Signed-off-by: Damien George <damien@micropython.org>
Some of these will later be moved to CORE or BASIC, but EXTRA is a good
starting point based on what stm32 uses.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit removes all parts of code associated with the existing
MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE optimisation option, including the
-mcache-lookup-bc option to mpy-cross.
This feature originally provided a significant performance boost for Unix,
but wasn't able to be enabled for MCU targets (due to frozen bytecode), and
added significant extra complexity to generating and distributing .mpy
files.
The equivalent performance gain is now provided by the combination of
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE (which has
been enabled on the unix port in the previous commit).
It's hard to provide precise performance numbers, but tests have been run
on a wide variety of architectures (x86-64, ARM Cortex, Aarch64, RISC-V,
xtensa) and they all generally agree on the qualitative improvements seen
by the combination of MICROPY_OPT_LOAD_ATTR_FAST_PATH and
MICROPY_OPT_MAP_LOOKUP_CACHE.
For example, on a "quiet" Linux x64 environment (i3-5010U @ 2.10GHz) the
change from CACHE_MAP_LOOKUP_IN_BYTECODE, to LOAD_ATTR_FAST_PATH combined
with MAP_LOOKUP_CACHE is:
diff of scores (higher is better)
N=2000 M=2000 bccache -> attrmapcache diff diff% (error%)
bm_chaos.py 13742.56 -> 13905.67 : +163.11 = +1.187% (+/-3.75%)
bm_fannkuch.py 60.13 -> 61.34 : +1.21 = +2.012% (+/-2.11%)
bm_fft.py 113083.20 -> 114793.68 : +1710.48 = +1.513% (+/-1.57%)
bm_float.py 256552.80 -> 243908.29 : -12644.51 = -4.929% (+/-1.90%)
bm_hexiom.py 521.93 -> 625.41 : +103.48 = +19.826% (+/-0.40%)
bm_nqueens.py 197544.25 -> 217713.12 : +20168.87 = +10.210% (+/-3.01%)
bm_pidigits.py 8072.98 -> 8198.75 : +125.77 = +1.558% (+/-3.22%)
misc_aes.py 17283.45 -> 16480.52 : -802.93 = -4.646% (+/-0.82%)
misc_mandel.py 99083.99 -> 128939.84 : +29855.85 = +30.132% (+/-5.88%)
misc_pystone.py 83860.10 -> 82592.56 : -1267.54 = -1.511% (+/-2.27%)
misc_raytrace.py 21490.40 -> 22227.23 : +736.83 = +3.429% (+/-1.88%)
This shows that the new optimisations are at least as good as the existing
inline-bytecode-caching, and are sometimes much better (because the new
ones apply caching to a wider variety of map lookups).
The new optimisations can also benefit code generated by the native
emitter, because they apply to the runtime rather than the generated code.
The improvement for the native emitter when LOAD_ATTR_FAST_PATH and
MAP_LOOKUP_CACHE are enabled is (same Linux environment as above):
diff of scores (higher is better)
N=2000 M=2000 native -> nat-attrmapcache diff diff% (error%)
bm_chaos.py 14130.62 -> 15464.68 : +1334.06 = +9.441% (+/-7.11%)
bm_fannkuch.py 74.96 -> 76.16 : +1.20 = +1.601% (+/-1.80%)
bm_fft.py 166682.99 -> 168221.86 : +1538.87 = +0.923% (+/-4.20%)
bm_float.py 233415.23 -> 265524.90 : +32109.67 = +13.756% (+/-2.57%)
bm_hexiom.py 628.59 -> 734.17 : +105.58 = +16.796% (+/-1.39%)
bm_nqueens.py 225418.44 -> 232926.45 : +7508.01 = +3.331% (+/-3.10%)
bm_pidigits.py 6322.00 -> 6379.52 : +57.52 = +0.910% (+/-5.62%)
misc_aes.py 20670.10 -> 27223.18 : +6553.08 = +31.703% (+/-1.56%)
misc_mandel.py 138221.11 -> 152014.01 : +13792.90 = +9.979% (+/-2.46%)
misc_pystone.py 85032.14 -> 105681.44 : +20649.30 = +24.284% (+/-2.25%)
misc_raytrace.py 19800.01 -> 23350.73 : +3550.72 = +17.933% (+/-2.79%)
In summary, compared to MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE, the new
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE options:
- are simpler;
- take less code size;
- are faster (generally);
- work with code generated by the native emitter;
- can be used on embedded targets with a small and constant RAM overhead;
- allow the same .mpy bytecode to run on all targets.
See #7680 for further discussion. And see also #7653 for a discussion
about simplifying mpy-cross options.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The existing inline bytecode caching optimisation, selected by
MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE, reserves an extra byte in the
bytecode after certain opcodes, which at runtime stores a map index of the
likely location of this field when looking up the qstr. This scheme is
incompatible with bytecode-in-ROM, and doesn't work with native generated
code. It also stores bytecode in .mpy files which is of a different format
to when the feature is disabled, making generation of .mpy files more
complex.
This commit provides an alternative optimisation via an approach that adds
a global cache for map offsets, then all mp_map_lookup operations use it.
It's less precise than bytecode caching, but allows the cache to be
independent and external to the bytecode that is executing. It also works
for the native emitter and adds a similar performance boost on top of the
gain already provided by the native emitter.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
When the LOAD_ATTR opcode is executed there are quite a few different cases
that have to be handled, but the common case is accessing a member on an
instance type. Typically, built-in types provide methods which is why this
is common.
Fortunately, for this specific case, if the member is found in the member
map then there's no further processing.
This optimisation does a relatively cheap check (type is instance) and then
forwards directly to the member map lookup, falling back to the regular
path if necessary.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This is the beginning of a set of changes to simplify enabling/disabling
features. The goals are:
- Remove redundancy from mpconfigport.h (never set a value to the default
-- make it clear exactly what's being enabled).
- Improve consistency between ports. All "similar" ports (i.e. approx same
flash size) should get the same features.
- Simplify mpconfigport.h -- just get default/sensible options for the size
of the port.
- Make it easy for defining constrained boards (e.g. STM32F0/L0), they can
just set a lower level.
This commit makes a step towards this and defines the "core" level as the
current default feature set, and a "minimal" level to turn off everything.
And a few placeholder levels are added for where the other ports will
roughly land.
This is a no-op change for all ports.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The zephyr port doesn't support SoftI2C so it's not enabled, and the legacy
I2C constructor check can be removed.
Signed-off-by: Damien George <damien@micropython.org>
This is a generic API for synchronously bit-banging data on a pin.
Initially this adds a single supported encoding, which supports controlling
WS2812 LEDs.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This implements (most of) the PEP-498 spec for f-strings and is based on
https://github.com/micropython/micropython/pull/4998 by @klardotsh.
It is implemented in the lexer as a syntax translation to `str.format`:
f"{a}" --> "{}".format(a)
It also supports:
f"{a=}" --> "a={}".format(a)
This is done by extracting the arguments into a temporary vstr buffer,
then after the string has been tokenized, the lexer input queue is saved
and the contents of the temporary vstr buffer are injected into the lexer
instead.
There are four main limitations:
- raw f-strings (`fr` or `rf` prefixes) are not supported and will raise
`SyntaxError: raw f-strings are not supported`.
- literal concatenation of f-strings with adjacent strings will fail
"{}" f"{a}" --> "{}{}".format(a) (str.format will incorrectly use
the braces from the non-f-string)
f"{a}" f"{a}" --> "{}".format(a) "{}".format(a) (cannot concatenate)
- PEP-498 requires the full parser to understand the interpolated
argument, however because this entirely runs in the lexer it cannot
resolve nested braces in expressions like
f"{'}'}"
- The !r, !s, and !a conversions are not supported.
Includes tests and cpydiffs.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Optionally enabled via MICROPY_PY_UJSON_SEPARATORS. Enabled by default.
For dump, make sure mp_get_stream_raise is called after
mod_ujson_separators since CPython does it in this order (if both
separators and stream are invalid, separators will raise an exception
first).
Add separators argument in the docs as well.
Signed-off-by: Peter Züger <zueger.peter@icloud.com>
Signed-off-by: Damien George <damien@micropython.org>
This adds #if MICROPY_PY_USELECT_SELECT around the uselect.select()
function. According to the docs, this function is only for CPython
compatibility and should not normally be used. So we can disable it
and save a few bytes of flash space where possible.
Signed-off-by: David Lechner <david@pybricks.com>
This helper is added to properly set a pending exception, to mirror
mp_sched_schedule(), which schedules a function.
Signed-off-by: Damien George <damien@micropython.org>
This introduces a new option, MICROPY_ERROR_REPORTING_NONE, which
completely disables all error messages. To be used in cases where
MicroPython needs to fit in very limited systems.
Signed-off-by: Damien George <damien@micropython.org>
This allows configuring the pre-allocated size of sys.modules dict, in
order to prevent unwanted reallocations at run-time (3 sys-modules is
really not quite enough for a larger project).
The "word" referred to by BYTES_PER_WORD is actually the size of mp_obj_t
which is not always the same as the size of a pointer on the target
architecture. So rename this config value to better reflect what it
measures, and also prefix it with MP_.
For uses of BYTES_PER_WORD in setting the stack limit this has been
changed to sizeof(void *), because the stack usually grows with
machine-word sized values (eg an nlr_buf_t has many machine words in it).
Signed-off-by: Damien George <damien@micropython.org>
It's only used in one location, to test if << or >> will overflow when
shifting mp_uint_t. For such a test it's clearer to use sizeof(lhs_val),
which will be valid even if the type of lhs_val changes.
Signed-off-by: Damien George <damien@micropython.org>
This should be enabled when the mp_raw_code_save_file function is needed.
It is enabled for mpy-cross, and a check for defined(__APPLE__) is added to
cover Mac M1 systems.
Adds a new compile-time option MICROPY_EMIT_THUMB_ARMV7M which is enabled
by default (to get existing behaviour) and which should be disabled (set to
0) when building native emitter support (@micropython.native) on ARMv6M
targets.
Newer GCC versions are able to warn about switch cases that fall
through. This is usually a sign of a forgotten break statement, but in
the few cases where a fall through is intended we annotate it with this
macro to avoid the warning.
On ports where normal heap memory can contain executable code (eg ARM-based
ports such as stm32), native code loaded from an .mpy file may be reclaimed
by the GC because there's no reference to the very start of the native
machine code block that is reachable from root pointers (only pointers to
internal parts of the machine code block are reachable, but that doesn't
help the GC find the memory).
This commit fixes this issue by maintaining an explicit list of root
pointers pointing to native code that is loaded from an .mpy file. This
is not needed for all ports so is selectable by the new configuration
option MICROPY_PERSISTENT_CODE_TRACK_RELOC_CODE. It's enabled by default
if a port does not specify any special functions to allocate or commit
executable memory.
A test is included to test that native code loaded from an .mpy file does
not get reclaimed by the GC.
Fixes#6045.
Signed-off-by: Damien George <damien@micropython.org>
The syntax matches CPython and the semantics are equivalent except that,
unlike CPython, MicroPython allows using := to assign to comprehension
iteration variables, because disallowing this would take a lot of code to
check for it.
The new compile-time option MICROPY_PY_ASSIGN_EXPR selects this feature and
is enabled by default, following MICROPY_PY_ASYNC_AWAIT.
Older implementations deal with infinity/negative zero incorrectly. This
commit adds generic fixes that can be enabled by any port that needs them,
along with new tests cases.
Note: the uncrustify configuration is explicitly set to 'add' instead of
'force' in order not to alter the comments which use extra spaces after //
as a means of indenting text for clarity.
TimeoutError was added back in 077812b2ab for
the cc3200 port. In f522849a4d the cc3200
port enabled use of it in the socket module aliased to socket.timeout. So
it was never added to the builtins. Then it was replaced by
OSError(ETIMEDOUT) in 047af9b10b.
The esp32 port enables this exception, since the very beginning of that
port, but it could never be accessed because it's not in builtins.
It's being removed: 1) to not encourage its use; 2) because there are a lot
of other OSError subclasses which are not defined at all, and having
TimeoutError is a bit inconsistent.
Note that ports can add anything to the builtins via MICROPY_PORT_BUILTINS.
And they can also define their own exceptions using the
MP_DEFINE_EXCEPTION() macro.
Implements Task and TaskQueue classes in C, using a pairing-heap data
structure. Using this reduces RAM use of each Task, and improves overall
performance of the uasyncio scheduler.
To enable lazy loading of submodules (among other things), which is very
useful for MicroPython libraries that want to have optional subcomponents.
Disabled explicitly on minimal ports.
This commit adds micropython.heap_locked() which returns the current
lock-depth of the heap, and can be used by Python code to check if the heap
is locked or not. This new function is configured via
MICROPY_PY_MICROPYTHON_HEAP_LOCKED and is disabled by default.
This commit also changes the return value of micropython.heap_unlock() so
it returns the current lock-depth as well.
Functions like mp_keyboard_interrupt() may need to be called from an IRQ
handler and may need to be in a special memory section, so provide a
generic wrapping macro for a port to do this. The macro name is chosen to
be MICROPY_WRAP_<function name in uppercase> so that (in the future with
more wrappers) each function could potentially be handled separately.
This option (enabled by default for object representation A, B, C) makes
None/False/True objects immediate objects, ie they are no longer a concrete
object in ROM but are rather just values, eg None=0x6 for representation A.
Doing this saves a considerable amount of code size, due to these objects
being widely used:
bare-arm: -392 -0.591%
minimal x86: -252 -0.170% [incl +52(data)]
unix x64: -624 -0.125% [incl -128(data)]
unix nanbox: +0 +0.000%
stm32: -1940 -0.510% PYBV10
cc3200: -1216 -0.659%
esp8266: -404 -0.062% GENERIC
esp32: -732 -0.064% GENERIC[incl +48(data)]
nrf: -988 -0.675% pca10040
samd: -564 -0.556% ADAFRUIT_ITSYBITSY_M4_EXPRESS
Thanks go to @Jongy aka Yonatan Goldschmidt for the idea.