The code conventions suggest using header guards, but do not define how
those should look like and instead point to existing files. However, not
all existing files follow the same scheme, sometimes omitting header guards
altogether, sometimes using non-standard names, making it easy to
accidentally pick a "wrong" example.
This commit ensures that all header files of the MicroPython project (that
were not simply copied from somewhere else) follow the same pattern, that
was already present in the majority of files, especially in the py folder.
The rules are as follows.
Naming convention:
* start with the words MICROPY_INCLUDED
* contain the full path to the file
* replace special characters with _
In addition, there are no empty lines before #ifndef, between #ifndef and
one empty line before #endif. #endif is followed by a comment containing
the name of the guard macro.
py/grammar.h cannot use header guards by design, since it has to be
included multiple times in a single C file. Several other files also do not
need header guards as they are only used internally and guaranteed to be
included only once:
* MICROPY_MPHALPORT_H
* mpconfigboard.h
* mpconfigport.h
* mpthreadport.h
* pin_defs_*.h
* qstrdefs*.h
The default frozen modules are no longer included (but users can still
specify their own via FROZEN_MPY_DIR), complex numbers are disabled and so
are the native, viper and asm_thumb emitters. Users needing these features
can tune the build to disable other things.
By default the firmware is built with single-precision floating point.
To build a particular board using double precision instead, put the
following line in the mpconfigboard.mk file:
FLOAT_IMPL = double
Prior to making this a config option it was previously available on these
(and all other) ports, and it makes sense to keep it enabled for mpy-cross
as well as ports that have a decent amount of space for the code.
ExtInt, Timer and CAN IRQ callbacks are made to work with the scheduler.
They are still hard IRQs by default, but one can now call
micropython.schedule within the hard IRQ to schedule a soft callback.
This patch changes the threading implementation from simple round-robin
with busy waits on mutexs, to proper scheduling whereby threads that are
waiting on a mutex are only scheduled when the mutex becomes available.
This patch brings the _thread module to stmhal/pyboard. There is a very
simple round-robin thread scheduler, which is disabled if there is only
one thread (for efficiency when threading is not used).
The scheduler currently switches threads at a rate of 250Hz using the
systick timer and the pend-SV interrupt.
The GIL is disabled so one must be careful to use lock objects to prevent
concurrent access of objects.
The threading is disabled by default, one can enabled it with the config
option MICROPY_PY_THREAD to test it out.
This patch makes the following configuration changes:
- MICROPY_FSUSERMOUNT is disabled, removing old mounting infrastructure
- MICROPY_VFS is enabled, giving new VFS sub-system
- MICROPY_VFS_FAT is enabled, giving uos.VfsFat type
- MICROPY_FATFS_OO is enabled, to use new ooFatFs lib, R0.12b
User facing API should be almost unchanged. Most notable changes are
removal of os.mkfs (use os.VfsFat.mkfs instead) and pyb.mount doesn't
allow unmounting by passing None as the device.
The order now follows that in py/mpconfig.h and is a bit cleaner and easier
to maintain. No options were changed/added/removed with this patch, it's
just a reordering.
mp_kbd_exception is now considered the standard variable name to hold the
singleton KeyboardInterrupt exception.
This patch also moves the creation of this object from pyb_usb_init() to
main().
This is a pure refactoring (and simplification) of code so that stmhal
uses the software SPI class provided in extmod, for the machine.SPI
implementation.
So long as a port defines relevant mp_hal_pin_xxx functions (and delay) it
can make use of this software SPI class without the need for additional
code.
This allows one to construct an I2C object using ids that are specific
to the stmhal port, eg machine.I2C('X'). Right now the implementation
of I2C uses software I2C but the idea is to just change the C-level I2C
protocol functions to hardware implementations later on.
Implementations of persistent-code reader are provided for POSIX systems
and systems using FatFS. Macros to use these are MICROPY_READER_POSIX and
MICROPY_READER_FATFS respectively. If an alternative implementation is
needed then a port can define the function mp_reader_new_file.
This type was used only for the typedef of mp_obj_t, which is now defined
by the object representation. So we can now remove this unused typedef,
to simplify the mpconfigport.h file.
This patch adds support to fsusermount for multiple block devices
(instead of just one). The maximum allowed is fixed at compile time by
the size of the fs_user_mount array accessed via MP_STATE_PORT, which
in turn is set by MICROPY_FATFS_VOLUMES.
With this patch, stmhal (which is still tightly coupled to fsusermount)
is also modified to support mounting multiple devices And the flash and
SD card are now just two block devices that are mounted at start up if
they exist (and they have special native code to make them more
efficient).
For these 3 bitwise operations there are now fast functions for
positive-only arguments, and general functions for arbitrary sign
arguments (the fast functions are the existing implementation).
By default the fast functions are not used (to save space) and instead
the general functions are used for all operations.
Enable MICROPY_OPT_MPZ_BITWISE to use the fast functions for positive
arguments.
Functions added are:
- randint
- randrange
- choice
- random
- uniform
They are enabled with configuration variable
MICROPY_PY_URANDOM_EXTRA_FUNCS, which is disabled by default. It is
enabled for unix coverage build and stmhal.
Seedable and reproducible pseudo-random number generator. Implemented
functions are getrandbits(n) (n <= 32) and seed().
The algorithm used is Yasmarang by Ilya Levin:
http://www.literatecode.com/yasmarang