POP_BLOCK and POP_EXCEPT are now the same, and are always followed by a
JUMP. So this optimisation reduces code size, and RAM usage of bytecode by
two bytes for each try-except handler.
So these constant objects can be loaded by dereferencing the REG_FUN_TABLE
pointer instead of loading immediate values. This reduces the size of
generated native code (when such constants are used), and means that
pointers to these constants are no longer stored in the assembly code.
The maximum index into mp_fun_table is currently less than 1024 and should
stay that way to keep things efficient for all architectures, so there is
no need to handle loading the pointer directly via a literal in this
function.
All architectures now have a dedicated register to hold the pointer to the
native function table mp_fun_table, and so they all need to load this
register at the start of the native function. This commit makes the
loading of this register uniform across architectures by passing the
pointer in the constant table for the native function, and then loading the
register from the constant table. Doing it this way means that the pointer
is not stored in the assembly code, helping to make the code more portable.
Instead of storing the function pointer directly in the assembly code.
This makes the generated code more independent of the runtime (so easier to
relocate the code), and reduces the generated code size.
Instead of storing the function pointer directly in the assembly code.
This makes the generated code more independent of the runtime (so easier to
relocate the code), and reduces the generated code size.
This commit adds first class support for yield and yield-from in the native
emitter, including send and throw support, and yields enclosed in exception
handlers (which requires pulling down the NLR stack before yielding, then
rebuilding it when resuming).
This has been fully tested and is working on unix x86 and x86-64, and
stm32. Also basic tests have been done with the esp8266 port. Performance
of existing native code is unchanged.
The nlr_buf_t doesn't need to be part of the Python value stack (as it was
before this commit), it's simpler to have it separated as auxiliary state
that lives on the C stack. This will help adding yield support because in
that case the nlr_buf_t and Python value stack live in separate memory
areas (C stack and heap respectively).
This matches how bytecode does it, and matches the signature of
mp_emit_glue_assign_native. Since the native emitter doesn't support
nan-boxing uintptr_t and mp_uint_t are anyway the same bit-width.
This commit changes native code to handle constant objects like bytecode:
instead of storing the pointers inside the native code they are now stored
in a separate constant table (such pointers include objects like bignum,
bytes, and raw code for nested functions). This removes the need for the
GC to scan native code for root pointers, and takes a step towards making
native code independent of the runtime (eg so it can be compiled offline by
mpy-cross).
Note that the changes to the struct scope_t did not increase its size: on a
32-bit architecture it is still 48 bytes, and on a 64-bit architecture it
decreased from 80 to 72 bytes.
Loading a pointer by indexing into the native function table mp_fun_table,
rather than loading an immediate value (via a PC-relative load), uses less
code space.
This commit makes viper functions have the same signature as native
functions, at the level of the emitter/assembler. This means that viper
functions can now be wrapped in the same uPy object as native functions.
Viper functions are now responsible for parsing their arguments (before it
was done by the runtime), and this makes calling them more efficient (in
most cases) because the viper entry code can be custom generated to suit
the signature of the function.
This change also opens the way forward for viper functions to take
arbitrary numbers of arguments, and for them to handle globals correctly,
among other things.
Prior to this commit a function compiled with the native decorator
@micropython.native would not work correctly when accessing global
variables, because the globals dict was not being set upon function entry.
This commit fixes this problem by, upon function entry, setting as the
current globals dict the globals dict context the function was defined
within, as per normal Python semantics, and as bytecode does. Upon
function exit the original globals dict is restored.
In order to restore the globals dict when an exception is raised the native
function must guard its internals with an nlr_push/nlr_pop pair. Because
this push/pop is relatively expensive, in both C stack usage for the
nlr_buf_t and CPU execution time, the implementation here optimises things
as much as possible. First, the compiler keeps track of whether a function
even needs to access global variables. Using this information the native
emitter then generates three different kinds of code:
1. no globals used, no exception handlers: no nlr handling code and no
setting of the globals dict.
2. globals used, no exception handlers: an nlr_buf_t is allocated on the
C stack but it is not used if the globals dict is unchanged, saving
execution time because nlr_push/nlr_pop don't need to run.
3. function has exception handlers, may use globals: an nlr_buf_t is
allocated and nlr_push/nlr_pop are always called.
In the end, native functions that don't access globals and don't have
exception handlers will run more efficiently than those that do.
Fixes issue #1573.
This patch adds full support for unwinding jumps to the native emitter.
This means that return/break/continue can be used in try-except,
try-finally and with statements. For code that doesn't use unwinding jumps
there is almost no overhead added to the generated code.
The native emitter keeps the current exception in a slot in its C stack
(instead of on its Python value stack), so when it catches an exception it
must explicitly clear that slot so the same exception is not reraised later
on.
Prior to this patch, native code would use a full nlr_buf_t for each
exception handler (try-except, try-finally, with). For nested exception
handlers this would use a lot of C stack and be rather inefficient.
This patch changes how exceptions are handled in native code by setting up
only a single nlr_buf_t context for the entire function, and then manages a
state machine (using the PC) to work out which exception handler to run
when an exception is raised by an nlr_jump. This keeps the C stack usage
at a constant level regardless of the depth of Python exception blocks.
The patch also fixes an existing bug when local variables are written to
within an exception handler, then their value was incorrectly restored if
an exception was raised (since the nlr_jump would restore register values,
back to the point of the nlr_push).
And it also gets nested try-finally+with working with the viper emitter.
Broadly speaking, efficiency of executing native code that doesn't use
any exception blocks is unchanged, and emitted code size is only slightly
increased for such function. C stack usage of all native functions is
either equal or less than before. Emitted code size for native functions
that use exception blocks is increased by roughly 10% (due in part to
fixing of above-mentioned bugs).
But, most importantly, this patch allows to implement more Python features
in native code, like unwind jumps and yielding from within nested exception
blocks.
There is no need to have three copies of the exception object on the top of
the native value stack. Instead, the values on the stack should be the
first two items in an nlr_buf_t: the prev pointer and the ret_val pointer.
This is all that is needed and is what the rest of the native emitter
expects is on the stack.
This patch is essentially an optimisation. Behaviour is unchanged,
although the stack layout for native exception handling now makes more
sense.
A native function allocates space on its C stack for mp_code_state_t,
followed by its Python stack, then its locals. This patch makes sure that
the native function actually starts at the start of its Python stack,
rather than at the start of mp_code_state_t (which didn't lead to any
issues so far because the mp_code_state_t is unused after the native
function sets itself up).
On x86 archs (both 32 and 64 bit) a bool return value only sets the 8-bit
al register, and the higher bits of the ax register have an undefined
value. When testing the return value of such cases it is required to just
test al for zero/non-zero. On the other hand, checking for truth or
zero/non-zero on an integer return value requires checking all bits of the
register. These two cases must be distinguished and handled correctly in
generated native code. This patch makes sure of this.
For other supported native archs (ARM, Thumb2, Xtensa) there is no such
distinction and this patch does not change anything for them.
In non-debug mode MP_OBJ_STOP_ITERATION is zero and comparing something to
zero can be done more efficiently in assembler than comparing to a non-zero
value.
Instead of emitnative.c having configuration code for each supported
architecture, and then compiling this file multiple times with different
macros defined, this patch adds a file per architecture with the necessary
code to configure the native emitter. These files then #include the
emitnative.c file.
This simplifies emitnative.c (which is already very large), and simplifies
the build system because emitnative.c no longer needs special handling for
compilation and qstr extraction.