This class supports SPI bus controller mode, with blocking transfers.
SPI device numbers start at 0, to comply with the pinout of the Teensy
boards. With the configured clock frequency the fastest baud rate is
33MHz. For messages longer 16 bytes DMA is used. The class uses the
existing framework with extmod/machine_spi.c.
Extended driver options:
- drive=n with n being between 1 and 6 or PIN.POWER_1 to PIN.POWER_6.
Since the pins used by the SPI are fixed, no Pin settings can be made.
Thus the drive option is added allowing to control ringing and crosstalk
on the connection.
- gap_ns=nnnnn is the time between sent data items in a frame given in ns.
Default is 2 clock cycles.
The implementation uses the LPUARTx devices. Up to 8 UARTs can be used,
given that the pins are accessible. E.g. 8 on Teensy 4.1, 5 on
MIMXRT1020_EVK.
For Tennsy 4.0 and 4.1 the UART numbers are as printed on the pinout 1..N.
The MIMXRT10xx-EVK boards have only one UART named, which gets the number
1. All other UART are assigned to different Pins:
MIMXRT1010-EVK:
D0/D1 UART 1
D6/D7 UART 2
A0/D4 UART 3
MIMXRT1020-EVK:
D0/D1 UART 1
D6/D9 UART 2
D10/D12 UART 3
D14/D15 UART 4
A0/A1 UART 5
MIMXRT1050-EVK, MIMXRT1060-EVK, MIMXRT1064-EVK:
D0/D1 UART 1
D7/D6 UART 2
D8/D9 UART 3
A1/A0 UART 4
Initial version, using the LP RTC clock. It provides setting the date and
time with rtc.init() or rtc.datetime(), and reading the date and time with
rtc.datetime() or rtc.now(). The method weekday() reports the weekday of
the current date. It starts with 0 for Monday.
The tuple order for datetime() and now() matches the CPython sequence:
(year, month, day, hour, minute, second, microsecond, TZ). TZ is ignored
and reported as None. Microsecond is provided at a best effort.
If a battery is not supplied, the default boot date/time is 1970/1/1 0:0:0.
With a battery, the clock continues to run even when the board is not
powered. The clock is quite precise. If not, using rtc.calibration() may
help.
It supports three hardware timer channels based on the PIT timers of the
MIMXRT MCU. The timer id's are 0, 1 and 2. On soft reboot all active
timers will be stopped via finalisers.
- modified pin type from pin_obj_t to machine_pin_obj_t
- created machine_pin.c
- implemented basic version of make-pins.py to genertate pins.c/.h files
automatically; the only alternate function currently supported is GPIO
- added af.csv files for all supported MCUs
- replaced pins.c/pins.h files with pin.csv for all boards
- implemented on/off/high/low/value/init methods
- Implemented IN/OUT/OPEN_DRAIN modes
- modified LDFLAGS for DEBUG build to get usefull .elf file for debugging
Signed-off-by: Philipp Ebensberger
This commit implements an LED class with rudimentary parts of a pin C API
to support it. The LED class does not yet support setting an intensity.
This LED class is put in the machine module for the time being, until a
better place is found.
One LED is supported on TEENSY40 and MIMXRT1010_EVK boards.
This is an extremely minimal port to the NXP i.MX RT, in the style of the
SAMD port It's largely based on the TinyUSB mimxrt implementation, using
the NXP SDK. It currently supports the Teensy 4.0 board with a REPL over
the USB-VCP interface.
This commit also adds the NXP SDK submodule (also from TinyUSB) to
lib/nxp_driver.
Note: if you already have the tinyusb submodule initialized recursively you
will need to run the following as the tinyusb sub-submodules have been
rearranged (upstream):
git submodule deinit lib/tinyusb
rm -rf .git/modules/lib/tinyusb
git submodule update --init lib/tinyusb