On NRF, the `rtc_reset()` function is never called. As a result,
calls to `time.time()` return a cryptic error>
```
>>> import time
>>> time.time()
'' object has no attribute 'datetime'
>>>
```
This is because `MP_STATE_VM(rtc_time_source)` is not initialized
due to `rtc_reset()` never being called.
If `CIRCUITPY_RTC` is enabled, call `rtc_reset()` as part of the
`reset_port()` call. This ensures that `time.time()` works as expected.
Signed-off-by: Sean Cross <sean@xobs.io>
The timeout value is calculated by the common-hal layer now, so we don't
need to be quite so clever about calculating it here.
Signed-off-by: Sean Cross <sean@xobs.io>
Add a field to allow specifying a timeout when initiating advertising.
As part of this, add a new property to determine if the device is still
advertising.
Additionally, have the `anonymous` property require a timeout, and set
the timeout to the maximum possible value if no timeout is specified.
Signed-off-by: Sean Cross <sean@xobs.io>
Add a new parameter to the `start_advertising()` function to enable
anonymous advertising. This forces a call to `sd_ble_gap_privacy_set()`
with `privacy_mode` set to `BLE_GAP_PRIVACY_MODE_DEVICE_PRIVACY` and
`private_addr_type` set to
`BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE`.
With this, addresses will cycle at a predefined rate (currently once
every 15 minutes).
Signed-off-by: Sean Cross <sean@xobs.io>
This change takes polygon from 126k pixels per second fill to 240k pps fill
on a reference 5 point star 50x66px polygon, updating both location and shape
at 10hz. Tested on an m4 express feather.
As a curiosity, the flat-out fill rate of a shape whose get_pixel is `return 0;`
fills just shy of 375k pixels per second.
Store the RTC value in the .uninitialized section, but make sure to
flank it with some known values. That way we can determine if the RTC
value has been initialized, or if it's random uninitialized garbage.
As part of this, add a `common_hal_rtc_init()` routine to determine if
the value is correct, or reset it to 0 if it is not valid.
Signed-off-by: Sean Cross <sean@xobs.io>
Circuit Python supports saving a single word of data across reboots.
Previously, this data was placed immediately following the .bss.
However, this appeared to not work, as Circuit Python zeroes out the
heap when it starts up, and the heap begins immediately after the .bss.
Switch to using the new .uninitialized section in order to store this
word across resets.
Signed-off-by: Sean Cross <sean@xobs.io>
Previously, it was placed following .bss. However, now that there is a
new section after .bss, the heap must be moved forward.
Signed-off-by: Sean Cross <sean@xobs.io>
This section immediately follows the .bss section, and is designed to
contain uninitialized variables that should persist across reboots.
The section is placed directly after .bss, under the theory that the
size of Circuit Python's .bss + .data is bigger than the bootloader's
.bss + .data, so there is less likely to be a conflict.
Signed-off-by: Sean Cross <sean@xobs.io>