This is required since the Teensy Halfkay loader attempts to erase all of
the flash but fails to do so, at least in my tests. Formatting brings it
back to a known state.
This commit adds full support for a filesystem on all boards, with a block
device object mimxrt.Flash() and uos.VfsLfs2 enabled.
Main changes are:
- Refactoring of linker scripts to accomodate reserved area for VFS. VFS
will take up most of the available flash. 1M is reserved for code. 9K is
reserved for flash configuration, interrupts, etc.
- Addition of _boot.py with filesystem init code, called from main.c.
- Definition of the mimxrt module with a Flash class in modmimxrt.[ch].
- Implementation of a flash driver class in mimxrt_flash.c. All flashing
related functions are stored in ITCM RAM.
- Addition of the uos module with filesystem functions.
- Implementation of uos.urandom() for the sake of completeness of the uos
module.
It uses sample code from CircuitPython supplied under MIT license, which
uses the NXP SDK example code.
Done in collaboration with Philipp Ebensberger aka @alphaFred who
contributed the essential part to enable writing to flash while code is
executing, among other things.
Adds support for NeoPixels on GPIO32 and GPIO33 on ESP32. Otherwise,
NeoPixels wired to GPIO32/33 wll silently fail without any hints to the
user.
With thanks to @robert-hh.
Fixes issue #7221.
ATOM is a very small ESP32 development board produced by M5Stack, with a
size of 24mm * 24mm, with peripherals such as WS2812, IR, button, MPU6886
(Only Matrix), and 8 GPIO extensions. It also has a plastic shell.
The random module's getrandbits() method didn't give a proper error message
when calling it with a value that was outside of the range of 1-32, which
can lead to confusion using this function (which under CPython can accept
numbers larger than 32). Now instead of simply giving a ValueError it
gives an error message that states that the number of bits is constrained.
Also, since the random module's functions getrandbits() and randint()
differ from CPython, tests have been added to describe these differences.
For getrandbits the relevant documentation is shown and added to the docs.
The same is given for randint method so that the information is more easily
found.
Finally, since the int object lacks the bit_length() method there is a test
for that method also to include within the docs, showing the difference to
CPython.
asan considers that memcmp(p, q, N) is permitted to access N bytes at each
of p and q, even for values of p and q that have a difference earlier.
Accessing additional values is frequently done in practice, reading 4 or
more bytes from each input at a time for efficiency, so when completing
"non_exist<TAB>" in the repl, this causes a diagnostic:
==16938==ERROR: AddressSanitizer: global-buffer-overflow on
address 0x555555cd8dc8 at pc 0x7ffff726457b bp 0x7fffffffda20 sp 0x7fff
READ of size 9 at 0x555555cd8dc8 thread T0
#0 0x7ffff726457a (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xb857a)
#1 0x555555b0e82a in mp_repl_autocomplete ../../py/repl.c:301
#2 0x555555c89585 in readline_process_char ../../lib/mp-readline/re
#3 0x555555c8ac6e in readline ../../lib/mp-readline/readline.c:513
#4 0x555555b8dcbd in do_repl /home/jepler/src/micropython/ports/uni
#5 0x555555b90859 in main_ /home/jepler/src/micropython/ports/unix/
#6 0x555555b90a3a in main /home/jepler/src/micropython/ports/unix/m
#7 0x7ffff619a09a in __libc_start_main ../csu/libc-start.c:308
#8 0x55555595fd69 in _start (/home/jepler/src/micropython/ports/uni
0x555555cd8dc8 is located 0 bytes to the right of global variable
'import_str' defined in '../../py/repl.c:285:23' (0x555555cd8dc0) of
size 8
'import_str' is ascii string 'import '
Signed-off-by: Jeff Epler <jepler@gmail.com>
This configuration is used by @ladyada and more often than it should
we've discovered late that a change introduced problems building
there.
By adding this to regular CI, hopefully we learn about and fix these
issues sooner rather than later.
Before, when an OnDiskBitmap was a paletted bitmap type, the palette
was internal to the OnDiskBitmap, and it internally performed the palette
conversion itself. When using with a tilegrid, a ColorConverter() object
always had to be passed.
Now, an OnDiskBitmap has a "pixel_shader" property. If the bitmap is
a paletted bitmap type, it is a (modifiable) Palette object. Otherwise,
it is a ColorConverter() object as before. This allows palette effects
to be applied to paletted OnDiskBitmaps.
Code that used to say:
```python
face = displayio.TileGrid(odb, pixel_shader=displayio.ColorConverter())
```
must be updated to say:
```python
face = displayio.TileGrid(odb, pixel_shader=odb.pixel_shader)
```
Compatible code for 6.x and 7.x can say
```python
face = displayio.TileGrid(odb, pixel_shader=getattr(odb, 'pixel_shader', ColorConverter())
```