After an I/O event is triggered for fd, event flags are automatically reset,
so no further events are reported until new event flags are set. This is
an optimization for uasyncio, required to account for coroutine semantics:
each coroutine issues explicit read/write async call, and once that trigger,
no events should be reported to coroutine, unless it again explicitly
requests it. One-shot mode saves one linear scan over the poll array.
Per CPython docs, "Registering a file descriptor that’s already registered
is not an error, and has the same effect as registering the descriptor
exactly once."
https://docs.python.org/3/library/select.html#select.poll.register
That's somewhat ambiguous, what's implemented here is that if fd si not
yet registered, it is registered. Otherwise, the effect is equivalent to
modify() method.
Usually this checking is done by VM on jump instructions, but for linear
sequences of instructions and builtin functions this won't happen. Particular
target of this change is long-running builtin functions like time.sleep().
As set by signal handler. This assumes that exception will be raised
somewhere else, which so far doesn't happen for single function call.
Still, it makes sense to handle that in some common place.
This allows the mp_obj_t type to be configured to something other than a
pointer-sized primitive type.
This patch also includes additional changes to allow the code to compile
when sizeof(mp_uint_t) != sizeof(void*), such as using size_t instead of
mp_uint_t, and various casts.
THis is required to deal well with signals, signals being the closest
analogue of hardware interrupts for POSIX. This is also CPython 3.5
compliant behavior (PEP 475).
The main problem implementing this is to figure out how much time was
spent in waiting so far/how much is remaining. It's well-known fact that
Linux updates select()'s timeout value when returning with EINTR to the
remaining wait time. Here's what POSIX-based standards say about this:
(http://pubs.opengroup.org/onlinepubs/9699919799/functions/pselect.html):
"Upon successful completion, the select() function may modify the object
pointed to by the timeout argument."
I.e. it allows to modify timeout value, but doesn't say how exactly it is
modified. And actually, it allows such modification only "upon successful
completion", which returning with EINTR error hardly is.
POSIX also allows to request automatic EINTR restart for system calls using
sigaction call with SA_RESTART flag, but here's what the same document says
about it:
"If SA_RESTART has been set for the interrupting signal, it is
implementation-defined whether the function restarts or returns with
[EINTR]."
In other words, POSIX doesn't leave room for both portable and efficient
handling of this matter, so the code just allows to manually select
Linux-compatible behavior with MICROPY_SELECT_REMAINING_TIME option,
or otherwise will just raise OSError. When systems with non-Linux behavior
are found, they can be handled separately.
In other words, unix port now uses overriden printf(), instead of using
libc's. This should remove almost all dependency on libc stdio (which
is bloated).
Return tuple of (address_family, net_addr, [port, [extra_data]]). net_addr
is still raw network address as bytes object, but suitable for passing to
inet_ntop() function. At the very least, sockaddr() will separate address
family value from binary socket address (and currently, only AF_INET family
is decoded).
Now, if we build for an architecture which doesn't have dedicated support
for getting registers for GC scanning, fallback to setjmp-based method
automatically. It's still possible to force setjmp-based implementation
on archs with dedicated support (e.g. for testing, or for peculiar calling
conventions/optimizations).
py/mphal.h contains declarations for generic mp_hal_XXX functions, such
as stdio and delay/ticks, which ports should provide definitions for. A
port will also provide mphalport.h with further HAL declarations.
These MPHAL functions are intended to replace previously used HAL_Delay(),
HAL_GetTick() to provide better naming and MPHAL separation (they are
fully equivalent otherwise).
Also, refactor extmod/modlwip to use them.
This is required to properly select among overloaded methods. It however
relies on java.lang.Object-overloaded method to come last, which appears
to be the case for OpenJDK.
Another function (like stat) which is problematic to deal with on ABI level
(FFI), as struct statvfs layout may differ unpredictably between OSes and
even different versions of a same OS. So, implement it in C, returning a
10-element tuple of f_bsize, f_frsize, f_blocks, f_bfree, f_bavail, f_files,
f_ffree, f_favail, f_flag, f_namemax. This is exactly the order described
in Python3 docs, https://docs.python.org/3/library/os.html#os.statvfs
(but note that os.statvfs() should make these values available as
attributes).
As we dn't export constants for TCSANOW, etc., zero makes a good "don't
care" param, and now it will work also under Android Bionic and any other
libc.
Use CTRL-E to enter paste mode. Prompt starts with "===" and accepts
all characters verbatim, echoing them back. Only control characters are
CTRL-C which cancels the input and returns to normal REPL, and CTRL-D
which ends the input and executes it. The input is executed as though
it were a file. The input is not added to the prompt history.
With this patch parse nodes are allocated sequentially in chunks. This
reduces fragmentation of the heap and prevents waste at the end of
individually allocated parse nodes.
Saves roughly 20% of RAM during parse stage.
This fixes errors like these ones:
modffi.c: In function 'return_ffi_value':
modffi.c:143:29: error: cast to pointer from integer of different size
[-Werror=int-to-pointer-cast]
const char *s = (const char *)val;
^
modffi.c:162:20: error: cast to pointer from integer of different size
[-Werror=int-to-pointer-cast]
return (mp_obj_t)val;
^
modffi.c: In function 'ffifunc_call':
modffi.c:358:25: error: cast from pointer to integer of different size
[-Werror=pointer-to-int-cast]
values[i] = (ffi_arg)a;
^
modffi.c:373:25: error: cast from pointer to integer of different size
[-Werror=pointer-to-int-cast]
values[i] = (ffi_arg)s;
^
modffi.c:381:25: error: cast from pointer to integer of different size
[-Werror=pointer-to-int-cast]
values[i] = (ffi_arg)bufinfo.buf;
^
modffi.c:384:25: error: cast from pointer to integer of different size
[-Werror=pointer-to-int-cast]
values[i] = (ffi_arg)p->func;
^
These errors can be highlighted when building micropython from MIPS64
n32 because ffi_arg is 64-bit wide and the pointers on MIPS64 n32 are
32-bit wide, so it's trying to case an integer to a pointer (or
vice-versa) of a different size. We should cast first the pointer (or the
integer) to a pointer sized integer (intptr_t) to fix that problem.
Signed-off-by: Vicente Olivert Riera <Vincent.Riera@imgtec.com>