Checks for number of args removes where guaranteed by function descriptor,
self checking is replaced with mp_check_self(). In few cases, exception
is raised instead of assert.
This patch changes the type signature of .make_new and .call object method
slots to use size_t for n_args and n_kw (was mp_uint_t. Makes code more
efficient when mp_uint_t is larger than a machine word. Doesn't affect
ports when size_t and mp_uint_t have the same size.
This allows the mp_obj_t type to be configured to something other than a
pointer-sized primitive type.
This patch also includes additional changes to allow the code to compile
when sizeof(mp_uint_t) != sizeof(void*), such as using size_t instead of
mp_uint_t, and various casts.
Unfortunately, MP_OBJ_STOP_ITERATION doesn't have means to pass an associated
value, so we can't optimize StopIteration exception with (non-None) argument
to MP_OBJ_STOP_ITERATION.
Previous to this patch the printing mechanism was a bit of a tangled
mess. This patch attempts to consolidate printing into one interface.
All (non-debug) printing now uses the mp_print* family of functions,
mainly mp_printf. All these functions take an mp_print_t structure as
their first argument, and this structure defines the printing backend
through the "print_strn" function of said structure.
Printing from the uPy core can reach the platform-defined print code via
two paths: either through mp_sys_stdout_obj (defined pert port) in
conjunction with mp_stream_write; or through the mp_plat_print structure
which uses the MP_PLAT_PRINT_STRN macro to define how string are printed
on the platform. The former is only used when MICROPY_PY_IO is defined.
With this new scheme printing is generally more efficient (less layers
to go through, less arguments to pass), and, given an mp_print_t*
structure, one can call mp_print_str for efficiency instead of
mp_printf("%s", ...). Code size is also reduced by around 200 bytes on
Thumb2 archs.
This patch gets full function argument passing working with native
emitter. Includes named args, keyword args, default args, var args
and var keyword args. Fully Python compliant.
It reuses the bytecode mp_setup_code_state function to do all the hard
work. This function is slightly adjusted to accommodate native calls,
and the native emitter is forced a bit to emit similar prelude and
code-info as bytecode.
This saves a lot of RAM for 2 reasons:
1. For functions that don't have default values, var args or var kw
args (which is a large number of functions in the general case), the
mp_obj_fun_bc_t type now fits in 1 GC block (previously needed 2 because
of the extra pointer to point to the arg_names array). So this saves 16
bytes per function (32 bytes on 64-bit machines).
2. Combining separate memory regions generally saves RAM because the
unused bytes at the end of the GC block are saved for 1 of the blocks
(since that block doesn't exist on its own anymore). So generally this
saves 8 bytes per function.
Tested by importing lots of modules:
- 64-bit Linux gave about an 8% RAM saving for 86k of used RAM.
- pyboard gave about a 6% RAM saving for 31k of used RAM.
Code-info size, block name, source name, n_state and n_exc_stack now use
variable length encoded uints. This saves 7-9 bytes per bytecode
function for most functions.
This improves stack usage in callers to mp_execute_bytecode2, and is step
forward towards unifying execution interface for function and generators
(which is important because generators don't even support full forms
of arguments passing (keywords, etc.)).
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
.throw() propagates any exceptions, and .close() swallows them. Yielding
in reponse to .throw(GeneratorExit) is still fatal, and we need to
handle it for .throw() case separately (previously it was handled only
for .close() case).
Obscure corner cases due to test_pep380.py.
Pretty much everyone needs to include map.h, since it's such an integral
part of the Micro Python object implementation. Thus, the definitions
are now in obj.h instead. map.h is removed.
Mostly just a global search and replace. Except rt_is_true which
becomes mp_obj_is_true.
Still would like to tidy up some of the names, but this will do for now.
Rationale: setting up the stack (state for locals and exceptions) is
really part of the "code", it's the prelude of the function. For
example, native code adjusts the stack pointer on entry to the function.
Native code doesn't need to know n_state for any other reason. So
putting the state size in the bytecode prelude is sensible.
It reduced ROM usage on STM by about 30 bytes :) And makes it easier to
pass information about the bytecode between functions.
Originally, .methods was used for methods in a ROM class, and
locals_dict for methods in a user-created class. That distinction is
unnecessary, and we can use locals_dict for ROM classes now that we have
ROMable maps.
This removes an entry in the bloated mp_obj_type_t struct, saving a word
for each ROM object and each RAM object. ROM objects that have a
methods table (now a locals_dict) need an extra word in total (removed
the methods pointer (1 word), no longer need the sentinel (2 words), but
now need an mp_obj_dict_t wrapper (4 words)). But RAM objects save a
word because they never used the methods entry.
Overall the ROM usage is down by a few hundred bytes, and RAM usage is
down 1 word per user-defined type/class.
There is less code (no need to check 2 tables), and now consistent with
the way ROM modules have their tables initialised.
Efficiency is very close to equivaluent.
Return with value gets converted to StopIteration(value). Implementation
keeps optimizing against creating of possibly unneeded exception objects,
so there're considerable refactoring to implement these features.
Each built-in exception is now a type, with base type BaseException.
C exceptions are created by passing a pointer to the exception type to
make an instance of. When raising an exception from the VM, an
instance is created automatically if an exception type is raised (as
opposed to an exception instance).
Exception matching (RT_BINARY_OP_EXCEPTION_MATCH) is now proper.
Handling of parse error changed to match new exceptions.
mp_const_type renamed to mp_type_type for consistency.
Ultimately all static strings should be qstr. This entry in the type
structure is only used for printing error messages (to tell the type of
the bad argument), and printing objects that don't supply a .print method.
Some tools do not support local/static symbols (one example is GNU ld map file).
Exposing all functions will allow to do detailed size comparisons, etc.
Also, added bunch of statics where they were missing, and replaced few identity
functions with global mp_identity().
We still have FAST_[0,1,2] byte codes, but they now just access the
fastn array (before they had special local variables). It's now
simpler, a bit faster, and uses a bit less stack space (on STM at least,
which is most important).
The only reason now to keep FAST_[0,1,2] byte codes is for compressed
byte code size.
Change state layout in VM so the stack starts at state[0] and grows
upwards. Locals are at the top end of the state and number downwards.
This cleans up a lot of the interface connecting the VM to C: now all
functions that take an array of Micro Python objects are in order (ie no
longer in reverse).
Also clean up C API with keyword arguments (call_n and call_n_kw
replaced with single call method that takes keyword arguments). And now
make_new takes keyword arguments.
emitnative.c has not yet been changed to comply with the new order of
stack layout.
Qstr's are now split into a linked-list of qstr pools. This has 2
benefits: the first pool can be in ROM (huge benefit, since we no longer
use RAM for the core qstrs), and subsequent pools use m_new for the next
pool instead of m_renew (thus avoiding a huge single table for all the
qstrs).
Still would be better to use a hash table, but this scheme takes us part
of the way (eventually convert the pools to hash tables).
Also fixed bug with import.
Also improved the way the module code is referenced (not magic number 1
anymore).
A big change. Micro Python objects are allocated as individual structs
with the first element being a pointer to the type information (which
is itself an object). This scheme follows CPython. Much more flexible,
not necessarily slower, uses same heap memory, and can allocate objects
statically.
Also change name prefix, from py_ to mp_ (mp for Micro Python).