Support for C++ was added in 97960dc7de but
that commit didn't include the C++ exception handling table in the binary
firmware image. This commit fixes that.
Signed-off-by: Damien George <damien@micropython.org>
The GNU Make dir command uses spaces as item separator so it does not
work for e.g building the STM32 port on Cygwin with a default Arm
installation in "c:/program files (x86)/GNU Arm Embedded Toolchain".
Fix by using POSIX dirname on a quoted path instead.
To match the definition of GENERATE_PACK_DFU, so a board can customise the
location/name of this file if needed.
Signed-off-by: Damien George <damien@micropython.org>
This commit adds support to stm32's mboot for signe, encrypted and
compressed DFU updates. It is based on inital work done by Andrew Leech.
The feature is enabled by setting MBOOT_ENABLE_PACKING to 1 in the board's
mpconfigboard.mk file, and by providing a header file in the board folder
(usually called mboot_keys.h) with a set of signing and encryption keys
(which can be generated by mboot_pack_dfu.py). The signing and encryption
is provided by libhydrogen. Compression is provided by uzlib. Enabling
packing costs about 3k of flash.
The included mboot_pack_dfu.py script converts a .dfu file to a .pack.dfu
file which can be subsequently deployed to a board with mboot in packing
mode. This .pack.dfu file is created as follows:
- the firmware from the original .dfu is split into chunks (so the
decryption can fit in RAM)
- each chunk is compressed, encrypted, a header added, then signed
- a special final chunk is added with a signature of the entire firmware
- all chunks are concatenated to make the final .pack.dfu file
The .pack.dfu file can be deployed over USB or from the internal filesystem
on the device (if MBOOT_FSLOAD is enabled).
See #5267 and #5309 for additional discussion.
Signed-off-by: Damien George <damien@micropython.org>
The -Og optimisation level produces a more realistic build, gives a better
debugging experience, and generates smaller code than -O0, allowing debug
builds to fit in flash.
This commit also assigns variables in can.c to prevent warnings when -Og is
used, and builds a board in CI with DEBUG=1 enabled.
Signed-off-by: Damien George <damien@micropython.org>
Also known as L2CAP "connection oriented channels". This provides a
socket-like data transfer mechanism for BLE.
Currently only implemented for NimBLE on STM32 / Unix.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This requires that the event handlers are called from non-interrupt context
(i.e. the MicroPython scheduler).
This will allow the BLE stack (e.g. NimBLE) to run from the scheduler
rather than an IRQ like PENDSV, and therefore be able to invoke Python
callbacks directly/synchronously. This allows writing Python BLE handlers
for events that require immediate response such as _IRQ_READ_REQUEST (which
was previous a hard IRQ) and future events relating to pairing/bonding.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
And rename SRC_HAL -> HAL_SRC_C and SRC_USBDEV -> USBDEV_SRC_C for
consistency with other source variables.
Follow on from 0fff2e03fe
Signed-off-by: Damien George <damien@micropython.org>
The file `$(BUILD)/firmware.bin` was used by the target `deploy-stlink` and
`deploy-openocd` but it was generated indirectly by the target
`firmware.dfu`.
As this file could be used to program boards directly by a Mass Storage
copy, it's better to make it explicitly generated.
Additionally, some target are refactored to remove redundancy and be more
explicit on dependencies.
Previously the interaction between the different layers of the Bluetooth
stack was different on each port and each stack. This commit defines
common interfaces between them and implements them for cyw43, btstack,
nimble, stm32, unix.
This code is imported from musl, to match existing code in libm_dbl.
The file is also added to the build in stm32/Makefile. It's not needed by
the core code but, similar to c5cc64175b,
allows round() to be used by user C modules or board extensions.
No functionality change is intended with this commit, it just consolidates
the separate implementations of GC helper code to the lib/utils/ directory
as a general set of helper functions useful for any port. This reduces
duplication of code, and makes it easier for future ports or embedders to
get the GC implementation correct.
Ports should now link against gchelper_native.c and either gchelper_m0.s or
gchelper_m3.s (currently only Cortex-M is supported but other architectures
can follow), or use the fallback gchelper_generic.c which will work on
x86/x64/ARM.
The gc_helper_get_sp function from gchelper_m3.s is not really GC related
and was only used by cc3200, so it has been moved to that port and renamed
to cortex_m3_get_sp.
In mboot, the ability to override the USB vendor/product id's was added
back in 5688c9ba09. However, when the main
firmware is turned into a DFU file the default VID/PID are used there.
pydfu.py doesn't care about this but dfu-util does and prevents its use
when the VID/PID don't match.
This commit exposes BOOTLOADER_DFU_USB_VID/PID as make variables, for use
on either command line or mpconfigboard.mk, to set VID/PID in both mboot
and DFU files.
Add -Wdouble-promotion and -Wfloat-conversion for most ports to ban out
implicit floating point conversions, and add extra Travis builds using
MICROPY_FLOAT_IMPL_FLOAT to uncover warnings which weren't found
previously. For the unix port -Wsign-comparison is added as well but only
there since only clang supports this but gcc doesn't.
This function is not used by the core but having it as part of the build
allows it to be used by user C modules, or board extensions. The linker
won't include it in the final firmware if it remains unused.
This makes a cleaner separation between the: driver, HCI UART and BT stack.
Also updated the naming to be more consistent (mp_bluetooth_hci_*).
Work done in collaboration with Jim Mussared aka @jimmo.
Move extmod/modbluetooth_nimble.* to extmod/nimble. And move common
Makefile lines to extmod/nimble/nimble.mk (which was previously only used
by stm32). This allows (upcoming) btstack to follow a similar structure.
Work done in collaboration with Jim Mussared aka @jimmo.
This commit improves pllvalues.py to generate PLL values for H7 MCUs that
are valid (VCO in and out are in range) and extend for the entire range of
SYSCLK values up to 400MHz (up to 480MHz is currently unsupported).
Most stm32 boards can now be built in nan-boxing mode via:
$ make NANBOX=1
Note that if float is enabled then it will be forced to double-precision.
Also, native emitters will be disabled.
This commit removes the Makefile-level MICROPY_FATFS config and moves the
MICROPY_VFS_FAT config to the Makefile level to replace it. It also moves
the include of the oofatfs source files in the build from each port to a
central place in extmod/extmod.mk.
For a port to enabled VFS FAT support it should now set MICROPY_VFS_FAT=1
at the level of the Makefile. This will include the relevant oofatfs files
in the build and set MICROPY_VFS_FAT=1 at the C (preprocessor) level.
This commit adds an implementation of machine.Timer backed by the soft
timer mechanism. It allows an arbitrary number of timers with 1ms
resolution, with an associated Python callback. The Python-level API
matches existing ports that have a soft timer, and is used as:
from machine import Timer
t = Timer(freq=10, callback=lambda t:print(t))
...
t = Timer(mode=Timer.ONE_SHOT, period=2000, callback=lambda t:print(t))
...
t.deinit()
This commit adds an implementation of a "software timer" with a 1ms
resolution, using SysTick. It allows unlimited number of concurrent
timers (limited only by memory needed for each timer entry). They can be
one-shot or periodic, and associated with a Python callback.
There is a very small overhead added to the SysTick IRQ, which could be
further optimised in the future, eg by patching SysTick_Handler code
dynamically.
On other ports (e.g. ESP32) they provide a complete Nimble implementation
(i.e. we don't need to use the code in extmod/nimble). This change
extracts out the bits that we don't need to use in other ports:
- malloc/free/realloc for Nimble memory.
- pendsv poll handler
- depowering the cywbt
Also cleans up the root pointer management.
The new fdcan.c file provides the low-level C interface to the FDCAN
peripheral, and pyb_can.c is updated to support both traditional CAN and
FDCAN, depending on the MCU being compiled for.
This new series of MCUs is similar to the L4 series with an additional
Cortex-M0 coprocessor. The firmware for the wireless stack must be managed
separately and MicroPython does not currently interface to it. Supported
features so far include: RTC, UART, USB, internal flash filesystem.