Prior to this commit, the USB CDC OUT endpoint got NACK'd if a character
was received but not consumed by the application, e.g. via
sys.stdin.read(). This meant that USB CDC was blocked and no additional
characters could be sent from the host. In particular a ctrl-C could not
interrupt the application if another character was pending.
To fix the issue, the approach in this commit uses a callback tud_cdc_rx_cb
which is called by the TinyUSB stack on reception of new CDC data. By
consuming the data immediately, the endpoint does not stall anymore. The
previous handler tud_cdc_rx_wanted_cb was made obsolete and removed.
In addition some cleanup was done along the way: by adding interrupt_char.c
and removing the existing code mp_hal_set_interrupt_char(). Also, there is
now only one (stdin) ringbuffer.
Fixes issue #7996.
The stack (and arg) of core1 is itself a root pointer, not just the entries
in it. Without this fix the GC could reclaim the entire stack (and
argument object).
Fixes issues #7124 and #7981.
The UART hardware flow control was not working correctly, the receive FIFO
was always fetched and RTS was never deasserted. This is not a problem
when hardware flow control is not used: normally, if the receive FIFO is
full, the UART receiver won't receive data into the FIFO anymore, but the
current implementation fetches from the FIFO and discards it instead.
The problem is that data is discarded even when RTS is enabled.
This commit fixes the issue by only taking from the FIFO if there is room
in the ring buffer to put the character.
Signed-off-by: YoungJoon Chun <yjchun@mac.com>
The correct day-of-week is stored in the RTC (0=Monday, 6=Sunday) so there
is no need to adjust it for the return value of time.localtime().
Fixes issue #7889.
Signed-off-by: Damien George <damien@micropython.org>
The inclusion of `umachine` in the list of built-in modules is now done
centrally in py/objmodule.c. Enabling MICROPY_PY_MACHINE will include this
module.
As part of this, all ports now have `umachine` as the core module name
(previously some had only `machine` as the name).
Signed-off-by: Damien George <damien@micropython.org>
The RP2040 I2C hardware can do writes of length 1 and 2, just not of length
0. So only use software I2C for writes of length 0, to improve
performance.
Also increase the software I2C timeout for zero-length writes to
accommodate the behaviour of a wider range of I2C devices.
Fixes issue #8167.
Signed-off-by: Damien George <damien@micropython.org>
Without these methods a lot of existing "portable" scripts are broken.
This change improves portability by making rp2 machine.UART more compliant
with the documented machine UART interface.
If MICROPY_PY_SYS_PATH_ARGV_DEFAULTS is enabled (which it is by default)
then sys.path and sys.argv will be initialised and populated with default
values. This keeps all bare-metal ports aligned.
Signed-off-by: Damien George <damien@micropython.org>
Frozen modules will be searched preferentially, but gives the user the
ability to override this behavior.
This matches the previous behavior where "" was implicitly the frozen
search path, but the frozen list was checked before the filesystem.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The pico-sdk 1.3.0 update in 97a7cc243b028833bdcb8ce0bc19b2bce7545851
introduced a change that broke RP2 Bluetooth UART, and possibly UART in
general, which stops working right after UART is initialized. The commit
raspberrypi/pico-sdk@2622e9b enables the UART receive timeout (RTIM) IRQ,
which is asserted when the receive FIFO is not empty, and no more
characters are received for a period of time.
This commit makes sure the RTIM IRQ is handled and cleared in
uart_service_interrupt.
Was incorrectly added as 7MB for an 8MB SPI flash, but this board has a
16MB chip, not 8MB, so it should be 15MB leaving 1MB for MicroPython.
Thanks to @robert-hh
The rp2.StateMachine.exec errors when supplying a sideset action. This
commit passes the sideset_opt from the StateMachine though to the parser.
It also adds some value validation to the sideset operator.
Additionally, the "word" method is added to the exec to allow any other
unsupported opcodes.
Fixes issue #7924.
This commit adds I2S protocol support for the rp2 port:
- I2S API is consistent with STM32 and ESP32 ports
- I2S configurations supported:
- master transmit and master receive
- 16-bit and 32-bit sample sizes
- mono and stereo formats
- sampling frequency
- 3 modes of operation:
- blocking
- non-blocking with callback
- uasyncio
- internal ring buffer size can be tuned
- DMA IRQs are managed on an I2S object basis, allowing other
RP2 entities to use DMA IRQs when I2S is not being used
- MicroPython documentation
- tested on Raspberry Pi Pico development board
- build metric changes for this commit: text(+4552), data(0), bss(+8)
Signed-off-by: Mike Teachman <mike.teachman@gmail.com>
This is an stm32-specific feature that's accessed via the pyb module, so
not something that will be widely enabled.
Signed-off-by: Damien George <damien@micropython.org>
This will be used by https://micropython.org/download/ to generate the
full listing of boards and firmware files.
Optionally supports a board.md for additional customisation of the
download page, as well as deploy.md for flashing instructions.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit refactors machine.PWM and creates extmod/machine_pwm.c. The
esp8266, esp32 and rp2 ports all use this and provide implementations of
the required PWM functionality. This helps to reduce code duplication and
keep the same Python API across ports.
This commit does not make any functional changes.
Signed-off-by: Damien George <damien@micropython.org>
The zephyr port doesn't support SoftI2C so it's not enabled, and the legacy
I2C constructor check can be removed.
Signed-off-by: Damien George <damien@micropython.org>
To keep things neat and tidy, we ensure that each file has 1 and only 1
newline at the end of each file.
Signed-off-by: David Lechner <david@pybricks.com>
Flash erase/program functions disable the XIP bit. If any code runs from
flash at the same time (eg an IRQ or code it calls) it will fail and cause
a lockup.