This patch consolidates all global variables in py/ core into one place,
in a global structure. Root pointers are all located together to make
GC tracing easier and more efficient.
The function is modeled after traceback.print_exception(), but unbloated,
and put into existing module to save overhead on adding another module.
Compliant traceback.print_exception() is intended to be implemented in
micropython-lib in terms of sys.print_exception().
This change required refactoring mp_obj_print_exception() to take pfenv_t
interface arguments.
Addresses #751.
UART object now uses a stream-like interface: read, readall, readline,
readinto, readchar, write, writechar.
Timeouts are configured when the UART object is initialised, using
timeout and timeout_char keyword args.
The object includes optional read buffering, using interrupts. You can set
the buffer size dynamically using read_buf_len keyword arg. A size of 0
disables buffering.
Teensy doesn't need to worry about overflows since all of
its timers are only 16-bit.
For PWM, the pulse width needs to be able to vary from 0..period+1
(pulse-width == period+1 corresponds to 100% PWM)
I couldn't test the 0xffffffff cases since we can't currently get a
period that big in python. With a prescaler of 0, that corresponds
to a freq of 0.039 (i.e. cycle every 25.56 seconds), and we can't
set that using freq or period.
I also tested both stmhal and teensy with floats disabled, which
required a few other code changes to compile.
Fix stmhal and teensy print routines to report actual prescaler an period.
Fix teensy build to use soft-float
Add USE_ARDUINO_TOOLCHAIN option to teensy build
sys.exit always raises SystemExit so doesn't need a special
implementation for each port. If C exit() is really needed, use the
standard os._exit function.
Also initialise mp_sys_path and mp_sys_argv in teensy port.
These functions are generally 1 machine instruction, and are used in
critical code, so makes sense to have them inline.
Also leave these functions uninverted (ie 0 means enable, 1 means
disable) and provide macro constants if you really need to distinguish
the states. This makes for smaller code as well (combined with
inlining).
Applied to teensy port as well.
Because (for Thumb) a function pointer has the LSB set, pointers to
dynamic functions in RAM (eg native, viper or asm functions) were not
being traced by the GC. This patch is a comprehensive fix for this.
Addresses issue #820.
Converts generted pins to use qstrs instead of string pointers.
This patch also adds the following functions:
pyb.Pin.names()
pyb.Pin.af_list()
pyb.Pin.gpio()
dir(pyb.Pin.board) and dir(pyb.Pin.cpu) also produce useful results.
pyb.Pin now takes kw args.
pyb.Pin.__str__ now prints more useful information about the pin
configuration.
I found the following functions in my boot.py to be useful:
```python
def pins():
for pin_name in dir(pyb.Pin.board):
pin = pyb.Pin(pin_name)
print('{:10s} {:s}'.format(pin_name, str(pin)))
def af():
for pin_name in dir(pyb.Pin.board):
pin = pyb.Pin(pin_name)
print('{:10s} {:s}'.format(pin_name, str(pin.af_list())))
```
qstr_init is always called exactly before mp_init, so makes sense to
just have mp_init call it. Similarly with
mp_init_emergency_exception_buf. Doing this makes the ports simpler and
less error prone (ie they can no longer forget to call these).
Conflicts:
stmhal/pin_named_pins.c
stmhal/readline.c
Renamed HAL_H to MICROPY_HAL_H. Made stmhal/mphal.h which intends to
define the generic Micro Python HAL, which in stmhal sits above the ST
HAL.
As we are building with -nostdlib gcc features like the stack protector
will fail linking, because the failure handlers are in gcc's internal
libs. Such features are implicitly disabled during compilation when
-nostdlib is used in CFLAGS too.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
The autogenerated header files have been moved about, and an extra
include dir has been added, which means you can give a custom
BUILD=newbuilddir option to make, and everything "just works"
Also tidied up the way the different Makefiles build their include-
directory flags
Full CPython compatibility with this requires actually parsing the
input so far collected, and if it fails parsing due to lack of tokens,
then continue collecting input. It's not worth doing it this way. Not
having compatibility at this level does not hurt the goals of Micro
Python.