Added pyb.elapsed_millis and pyb.elapsed_micros
tested using: stmhal: https://github.com/dhylands/upy-examples/blob/master/elapsed.py teensy: https://github.com/dhylands/upy-examples/blob/master/teensy/elapsed.py
This commit is contained in:
parent
f90b59e610
commit
a21f56b2d5
|
@ -188,15 +188,9 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);
|
|||
/// \function millis()
|
||||
/// Returns the number of milliseconds since the board was last reset.
|
||||
///
|
||||
/// Note that this may return a negative number. This allows you to always
|
||||
/// do:
|
||||
/// start = pyb.millis()
|
||||
/// ...do some operation...
|
||||
/// elapsed = pyb.millis() - start
|
||||
///
|
||||
/// and as long as the time of your operation is less than 24 days, you'll
|
||||
/// always get the right answer and not have to worry about whether pyb.millis()
|
||||
/// wraps around.
|
||||
/// The result is always a micropython smallint (31-bit signed number), so
|
||||
/// after 2^30 milliseconds (about 12.4 days) this will start to return
|
||||
/// negative numbers.
|
||||
STATIC mp_obj_t pyb_millis(void) {
|
||||
// We want to "cast" the 32 bit unsigned into a small-int. This means
|
||||
// copying the MSB down 1 bit (extending the sign down), which is
|
||||
|
@ -205,18 +199,29 @@ STATIC mp_obj_t pyb_millis(void) {
|
|||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);
|
||||
|
||||
/// \function elapsed_millis(start)
|
||||
/// Returns the number of milliseconds which have elapsed since `start`.
|
||||
///
|
||||
/// This function takes care of counter wrap, and always returns a positive
|
||||
/// number. This means it can be used to measure periods upto about 12.4 days.
|
||||
///
|
||||
/// Example:
|
||||
/// start = pyb.millis()
|
||||
/// while pyb.elapsed_millis(start) < 1000:
|
||||
/// # Perform some operation
|
||||
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
|
||||
uint32_t startMillis = mp_obj_get_int(start);
|
||||
uint32_t currMillis = HAL_GetTick();
|
||||
return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);
|
||||
|
||||
/// \function micros()
|
||||
/// Returns the number of microseconds since the board was last reset.
|
||||
///
|
||||
/// Note that this may return a negative number. This allows you to always
|
||||
/// do:
|
||||
/// start = pyb.micros()
|
||||
/// ...do some operation...
|
||||
/// elapsed = pyb.micros() - start
|
||||
///
|
||||
/// and as long as the time of your operation is less than 35 minutes, you'll
|
||||
/// always get the right answer and not have to worry about whether pyb.micros()
|
||||
/// wraps around.
|
||||
/// The result is always a micropython smallint (31-bit signed number), so
|
||||
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
|
||||
/// negative numbers.
|
||||
STATIC mp_obj_t pyb_micros(void) {
|
||||
// We want to "cast" the 32 bit unsigned into a small-int. This means
|
||||
// copying the MSB down 1 bit (extending the sign down), which is
|
||||
|
@ -225,6 +230,23 @@ STATIC mp_obj_t pyb_micros(void) {
|
|||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);
|
||||
|
||||
/// \function elapsed_micros(start)
|
||||
/// Returns the number of microseconds which have elapsed since `start`.
|
||||
///
|
||||
/// This function takes care of counter wrap, and always returns a positive
|
||||
/// number. This means it can be used to measure periods upto about 17.8 minutes.
|
||||
///
|
||||
/// Example:
|
||||
/// start = pyb.micros()
|
||||
/// while pyb.elapsed_micros(start) < 1000:
|
||||
/// # Perform some operation
|
||||
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
|
||||
uint32_t startMicros = mp_obj_get_int(start);
|
||||
uint32_t currMicros = sys_tick_get_microseconds();
|
||||
return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);
|
||||
|
||||
/// \function delay(ms)
|
||||
/// Delay for the given number of milliseconds.
|
||||
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
|
||||
|
@ -376,7 +398,9 @@ STATIC const mp_map_elem_t pyb_module_globals_table[] = {
|
|||
{ MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
|
||||
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },
|
||||
|
|
|
@ -68,6 +68,8 @@ Q(/sd)
|
|||
Q(/sd/lib)
|
||||
Q(millis)
|
||||
Q(micros)
|
||||
Q(elapsed_millis)
|
||||
Q(elapsed_micros)
|
||||
|
||||
// for file class
|
||||
Q(seek)
|
||||
|
|
|
@ -157,11 +157,66 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);
|
|||
|
||||
/// \function millis()
|
||||
/// Returns the number of milliseconds since the board was last reset.
|
||||
///
|
||||
/// The result is always a micropython smallint (31-bit signed number), so
|
||||
/// after 2^30 milliseconds (about 12.4 days) this will start to return
|
||||
/// negative numbers.
|
||||
STATIC mp_obj_t pyb_millis(void) {
|
||||
return mp_obj_new_int(HAL_GetTick());
|
||||
// We want to "cast" the 32 bit unsigned into a small-int. This means
|
||||
// copying the MSB down 1 bit (extending the sign down), which is
|
||||
// equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
|
||||
return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);
|
||||
|
||||
/// \function elapsed_millis(start)
|
||||
/// Returns the number of milliseconds which have elapsed since `start`.
|
||||
///
|
||||
/// This function takes care of counter wrap, and always returns a positive
|
||||
/// number. This means it can be used to measure periods upto about 12.4 days.
|
||||
///
|
||||
/// Example:
|
||||
/// start = pyb.millis()
|
||||
/// while pyb.elapsed_millis(start) < 1000:
|
||||
/// # Perform some operation
|
||||
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
|
||||
uint32_t startMillis = mp_obj_get_int(start);
|
||||
uint32_t currMillis = HAL_GetTick();
|
||||
return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);
|
||||
|
||||
/// \function micros()
|
||||
/// Returns the number of microseconds since the board was last reset.
|
||||
///
|
||||
/// The result is always a micropython smallint (31-bit signed number), so
|
||||
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
|
||||
/// negative numbers.
|
||||
STATIC mp_obj_t pyb_micros(void) {
|
||||
// We want to "cast" the 32 bit unsigned into a small-int. This means
|
||||
// copying the MSB down 1 bit (extending the sign down), which is
|
||||
// equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
|
||||
return MP_OBJ_NEW_SMALL_INT(micros());
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);
|
||||
|
||||
/// \function elapsed_micros(start)
|
||||
/// Returns the number of microseconds which have elapsed since `start`.
|
||||
///
|
||||
/// This function takes care of counter wrap, and always returns a positive
|
||||
/// number. This means it can be used to measure periods upto about 17.8 minutes.
|
||||
///
|
||||
/// Example:
|
||||
/// start = pyb.micros()
|
||||
/// while pyb.elapsed_micros(start) < 1000:
|
||||
/// # Perform some operation
|
||||
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
|
||||
uint32_t startMicros = mp_obj_get_int(start);
|
||||
uint32_t currMicros = micros();
|
||||
return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);
|
||||
|
||||
/// \function delay(ms)
|
||||
/// Delay for the given number of milliseconds.
|
||||
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
|
||||
|
@ -248,6 +303,9 @@ STATIC const mp_map_elem_t pyb_module_globals_table[] = {
|
|||
{ MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
|
||||
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },
|
||||
|
|
|
@ -50,6 +50,9 @@ Q(enable_irq)
|
|||
Q(usb_mode)
|
||||
Q(have_cdc)
|
||||
Q(millis)
|
||||
Q(micros)
|
||||
Q(elapsed_millis)
|
||||
Q(elapsed_micros)
|
||||
Q(udelay)
|
||||
Q(UART)
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
#include MICROPY_HAL_H
|
||||
|
||||
uint32_t HAL_GetTick(void) {
|
||||
return micros();
|
||||
return millis();
|
||||
}
|
||||
|
||||
void HAL_Delay(uint32_t Delay) {
|
||||
|
|
Loading…
Reference in New Issue