This changes stm32 from using PENDSV to run NimBLE to use the MicroPython
scheduler instead. This allows Python BLE callbacks to be invoked directly
(and therefore synchronously) rather than via the ringbuffer.
The NimBLE UART HCI and event processing now happens in a scheduled task
every 128ms. When RX IRQ idle events arrive, it will also schedule this
task to improve latency.
There is a similar change for the unix port where the background thread now
queues the scheduled task.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Running the update inside the soft-reset loop will mean that (on boards
like PYBD that use a bootloader) the same reset mode is used each
reset loop, eg factory reset occurs each time.
Signed-off-by: Damien George <damien@micropython.org>
This makes a cleaner separation between the: driver, HCI UART and BT stack.
Also updated the naming to be more consistent (mp_bluetooth_hci_*).
Work done in collaboration with Jim Mussared aka @jimmo.
This commit refactors and generalises the boot-mount routine on stm32 so
that it can mount filesystems of arbitrary type. That is, it no longer
assumes that the filesystem is FAT. It does this by using mp_vfs_mount()
which does auto-detection of the filesystem type.
This commit adds an implementation of a "software timer" with a 1ms
resolution, using SysTick. It allows unlimited number of concurrent
timers (limited only by memory needed for each timer entry). They can be
one-shot or periodic, and associated with a Python callback.
There is a very small overhead added to the SysTick IRQ, which could be
further optimised in the future, eg by patching SysTick_Handler code
dynamically.
The new configurations MICROPY_HW_USB_MSC and MICROPY_HW_USB_HID can be
used by a board to enabled or disable MSC and/or HID. They are both
enabled by default.
stm32lib now provides system_stm32XXxx.c source files for all MCU variants,
which includes SystemInit and prescaler tables. Since these are quite
standard and don't need to be changed, switch to use them instead of custom
variants, making the start-up code cleaner.
The SystemInit code in stm32lib was checked and is equivalent to what is
removed from the stm32 port in this commit.
If both FS and HS USB peripherals are enabled for a board then the active
one used for the REPL will now be auto-detected, by checking to see if both
the DP and DM lines are actively pulled low. By default the code falls
back to use MICROPY_HW_USB_MAIN_DEV if nothing can be detected.
Entering a bootloader (ST system bootloader, or custom mboot) from software
by directly branching to it is not reliable, and the reliability of it
working can depend on the peripherals that were enabled by the application
code. It's also not possible to branch to a bootloader if the WDT is
enabled (unless the bootloader has specific provisions to feed the WDT).
This patch changes the way a bootloader is entered from software by first
doing a complete system reset, then branching to the desired bootloader
early on in the start-up process. The top two words of RAM (of the stack)
are reserved to store flags indicating that the bootloader should be
entered after a reset.
Previously the end of the heap was the start (lowest address) of the stack.
With the changes in this commit these addresses are now independent,
allowing a board to place the heap and stack in separate locations.
With this the user can select multiple logical units to expose over USB MSC
at once, eg: pyb.usb_mode('VCP+MSC', msc=(pyb.Flash(), pyb.SDCard())). The
default behaviour is the original behaviour of just one unit at a time.
The board config option MICROPY_HW_USB_ENABLE_CDC2 is now changed to
MICROPY_HW_USB_CDC_NUM, and the latter should be defined to the maximum
number of CDC interfaces to support (defaults to 1).
The new function factory_reset_make_files() populates the given filesystem
with the default factory files. It is defined with weak linkage so it can
be overridden by a board.
This commit also brings some minor user-facing changes:
- boot.py is now no longer created unconditionally if it doesn't exist, it
is now only created when the filesystem is formatted and the other files
are populated (so, before, if the user deleted boot.py it would be
recreated at next boot; now it won't be).
- pybcdc.inf and README.txt are only created if the board has USB, because
they only really make sense if the filesystem is exposed via USB.
The stm32 and nrf ports already had the behaviour that they would first
check if the script exists before executing it, and this patch makes all
other ports work the same way. This helps when developing apps because
it's hard to tell (when unconditionally trying to execute the scripts) if
the resulting OSError at boot up comes from missing boot.py or main.py, or
from some other error. And it's not really an error if these scripts don't
exist.
This patch makes the DAC driver simpler and removes the need for the ST
HAL. As part of it, new helper functions are added to the DMA driver,
which also use direct register access instead of the ST HAL.
Main changes to the DAC interface are:
- The DAC uPy object is no longer allocated dynamically on the heap,
rather it's statically allocated and the same object is retrieved for
subsequent uses of pyb.DAC(<id>). This allows to access the DAC objects
without resetting the DAC peripheral. It also means that the DAC is only
reset if explicitly passed initialisation parameters, like "bits" or
"buffering".
- The DAC.noise() and DAC.triangle() methods now output a signal which is
full scale (previously it was a fraction of the full output voltage).
- The DAC.write_timed() method is fixed so that it continues in the
background when another peripheral (eg SPI) uses the DMA (previously the
DAC would stop if another peripheral finished with the DMA and shut the
DMA peripheral off completely).
Based on the above, the following backwards incompatibilities are
introduced:
- pyb.DAC(id) will now only reset the DAC the first time it is called,
whereas previously each call to create a DAC object would reset the DAC.
To get the old behaviour pass the bits parameter like: pyb.DAC(id, bits).
- DAC.noise() and DAC.triangle() are now full scale. To get previous
behaviour (to change the amplitude and offset) write to the DAC_CR (MAMP
bits) and DAC_DHR12Rx registers manually.
Use uos.dupterm for REPL configuration of the main USB_VCP(0) stream on
dupterm slot 1, if USB is enabled. This means dupterm can also be used to
disable the boot REPL port if desired, via uos.dupterm(None, 1).
For efficiency this adds a simple hook to the global uos.dupterm code to
work with streams that are known to be native streams.
Replaces "PYB: soft reboot" with "MPY: soft reboot", etc.
Having a consistent prefix across ports reduces the difference between
ports, which is a general goal. And this change won't break pyboard.py
because that tool only looks for "soft reboot".
This way the UART REPL does not need the MicroPython heap and exists
outside the MicroPython runtime, allowing characters to still be received
during a soft reset.
Without the static qualifier these objects will be kept by the linker even
if they are unused. So this patch saves some RAM when these features are
unused by a board.
The new option MICROPY_HW_SDCARD_MOUNT_AT_BOOT can now be defined to 0 in
mpconfigboard.h to allow SD hardware to be enabled but not auto-mounted at
boot. This feature is enabled by default to retain previous behaviour.
Previously, if an SD card is enabled in hardware it is also used to boot
from. While this can be disabled with a SKIPSD file on internal flash,
this wont be available at first boot or if the internal flash gets
corrupted.