By having an order-only dependency on the directory itself, the directory
is sure to be created before the rule to create a .mo file is.
This fixes a low-freqency error on github actions such as
> msgfmt: error while opening "build/genhdr/en_US.mo" for writing: No such file or directory
Protocols are nice, but there is no way for C code to verify whether
a type's "protocol" structure actually implements some particular
protocol. As a result, you can pass an object that implements the
"vfs" protocol to one that expects the "stream" protocol, and the
opposite of awesomeness ensues.
This patch adds an OPTIONAL (but enabled by default) protocol identifier
as the first member of any protocol structure. This identifier is
simply a unique QSTR chosen by the protocol designer and used by each
protocol implementer. When checking for protocol support, instead of
just checking whether the object's type has a non-NULL protocol field,
use `mp_proto_get` which implements the protocol check when possible.
The existing protocols are now named:
protocol_framebuf
protocol_i2c
protocol_pin
protocol_stream
protocol_spi
protocol_vfs
(most of these are unused in CP and are just inherited from MP; vfs and
stream are definitely used though)
I did not find any crashing examples, but here's one to give a flavor of what
is improved, using `micropython_coverage`. Before the change,
the vfs "ioctl" protocol is invoked, and the result is not intelligible
as json (but it could have resulted in a hard fault, potentially):
>>> import uos, ujson
>>> u = uos.VfsPosix('/tmp')
>>> ujson.load(u)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: syntax error in JSON
After the change, the vfs object is correctly detected as not supporting
the stream protocol:
>>> ujson.load(p)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OSError: stream operation not supported
This introduces a new build variable FROZEN_MANIFEST which can be set to a
manifest listing (written in Python) that describes the set of files to be
frozen in to the firmware.
This commit adds support for sys.settrace, allowing to install Python
handlers to trace execution of Python code. The interface follows CPython
as closely as possible. The feature is disabled by default and can be
enabled via MICROPY_PY_SYS_SETTRACE.
The variable $(CAT) is initialised with the "cat" value in mkenv.mk like
for the other command line tools (rm, echo, cp, mkdir etc). With this,
for example, Windows users can specify the path of cat.exe.
This system makes it a lot easier to include external libraries as static,
native modules in MicroPython. Simply pass USER_C_MODULES (like
FROZEN_MPY_DIR) as a make parameter.
During make, makemoduledefs.py parses the current builds c files for
MP_REGISTER_MODULE(module_name, obj_module, enabled_define)
These are used to generate a header with the required entries for
"mp_rom_map_elem_t mp_builtin_module_table[]" in py/objmodule.c
Also, to make it possible for ports to provide their own lwipopts.h, the
default include directory of extmod/lwip-include is no longer added and
instead a port should now make sure the correct include directory is
included in the list (can still use extmod/lwip-include).
As mentioned in #4450, `websocket` was experimental with a single intended
user, `webrepl`. Therefore, we'll make this change without a weak
link `websocket` -> `uwebsocket`.
Building axtls gives a lot of warnings with -Wall enabled, and explicitly
disabling all of them cannot be done in a way compatible with gcc and
clang, and likely other compilers. So just use -Wno-all to prevent all of
the extra warnings (in addition to the necessary -Wno-unused-parameter,
-Wno-uninitialized, -Wno-sign-compare and -Wno-old-style-definition).
Fixes issue #4182.
This removes the need for a separate axtls build stage, and builds all
axtls object files along with other code. This simplifies and cleans up
the build process, automatically builds axtls when needed, and puts the
axtls object files in the correct $(BUILD) location.
The MicroPython axtls configuration file is provided in
extmod/axtls-include/config.h
This saves code space in builds which use link-time optimization.
The optimization drops the untranslated strings and replaces them
with a compressed_string_t struct. It can then be decompressed to
a c string.
Builds without LTO work as well but include both untranslated
strings and compressed strings.
This work could be expanded to include QSTRs and loaded strings if
a compress method is added to C. Its tracked in #531.
The API follows guidelines of https://www.python.org/dev/peps/pep-0272/,
but is optimized for code size, with the idea that full PEP 0272
compatibility can be added with a simple Python wrapper mode.
The naming of the module follows (u)hashlib pattern.
At the bare minimum, this module is expected to provide:
* AES128, ECB (i.e. "null") mode, encrypt only
Implementation in this commit is based on axTLS routines, and implements
following:
* AES 128 and 256
* ECB and CBC modes
* encrypt and decrypt
This VFS component allows to mount a host POSIX filesystem within the uPy
VFS sub-system. All traditional POSIX file access then goes through the
VFS, allowing to sandbox a uPy process to a certain sub-dir of the host
system, as well as mount other filesystem types alongside the host
filesystem.
Instead of emitnative.c having configuration code for each supported
architecture, and then compiling this file multiple times with different
macros defined, this patch adds a file per architecture with the necessary
code to configure the native emitter. These files then #include the
emitnative.c file.
This simplifies emitnative.c (which is already very large), and simplifies
the build system because emitnative.c no longer needs special handling for
compilation and qstr extraction.
If a port only needs the core files then it can now use the $(PY_CORE_O)
variable instead of $(PY_O). $(PY_EXTMOD_O) contains the list of extmod
files (including some files from lib/). $(PY_O) retains its original
definition as the list of all object file (including those for frozen code)
and is a convenience variable for ports that want everything.
So far, implements just append() and popleft() methods, required for
a normal queue. Constructor doesn't accept an arbitarry sequence to
initialize from (am empty deque is always created), so an empty tuple
must be passed as such. Only fixed-size deques are supported, so 2nd
argument (size) is required.
There's also an extension to CPython - if True is passed as 3rd argument,
append(), instead of silently overwriting the oldest item on queue
overflow, will throw IndexError. This behavior is desired in many
cases, where queues should store information reliably, instead of
silently losing some items.
This adapts the allocation process to start from either end of the heap
when searching for free space. The default behavior is identical to the
existing behavior where it starts with the lowest block and looks higher.
Now it can also look from the highest block and lower depending on the
long_lived parameter to gc_alloc. As the heap fills, the two sections may
overlap. When they overlap, a collect may be triggered in order to keep
the long lived section compact. However, free space is always eligable
for each type of allocation.
By starting from either of the end of the heap we have ability to separate
short lived objects from long lived ones. This separation reduces heap
fragmentation because long lived objects are easy to densely pack.
Most objects are short lived initially but may be made long lived when
they are referenced by a type or module. This involves copying the
memory and then letting the collect phase free the old portion.
QSTR pools and chunks are always long lived because they are never freed.
The reallocation, collection and free processes are largely unchanged. They
simply also maintain an index to the highest free block as well as the lowest.
These indices are used to speed up the allocation search until the next collect.
In practice, this change may slightly slow down import statements with the
benefit that memory is much less fragmented afterwards. For example, a test
import into a 20k heap that leaves ~6k free previously had the largest
continuous free space of ~400 bytes. After this change, the largest continuous
free space is over 3400 bytes.
Each NLR implementation (Thumb, x86, x64, xtensa, setjmp) duplicates a lot
of the NLR code, specifically that dealing with pushing and popping the NLR
pointer to maintain the linked-list of NLR buffers. This patch factors all
of that code out of the specific implementations into generic functions in
nlr.c, along with a helper macro in nlr.h. This eliminates duplicated
code.
This reverts commit 6a3a742a6c.
The above commit has number of faults starting from the motivation down
to the actual implementation.
1. Faulty implementation.
The original code contained functions like:
NORETURN void nlr_jump(void *val) {
nlr_buf_t **top_ptr = &MP_STATE_THREAD(nlr_top);
nlr_buf_t *top = *top_ptr;
...
__asm volatile (
"mov %0, %%edx \n" // %edx points to nlr_buf
"mov 28(%%edx), %%esi \n" // load saved %esi
"mov 24(%%edx), %%edi \n" // load saved %edi
"mov 20(%%edx), %%ebx \n" // load saved %ebx
"mov 16(%%edx), %%esp \n" // load saved %esp
"mov 12(%%edx), %%ebp \n" // load saved %ebp
"mov 8(%%edx), %%eax \n" // load saved %eip
"mov %%eax, (%%esp) \n" // store saved %eip to stack
"xor %%eax, %%eax \n" // clear return register
"inc %%al \n" // increase to make 1, non-local return
"ret \n" // return
: // output operands
: "r"(top) // input operands
: // clobbered registers
);
}
Which clearly stated that C-level variable should be a parameter of the
assembly, whcih then moved it into correct register.
Whereas now it's:
NORETURN void nlr_jump_tail(nlr_buf_t *top) {
(void)top;
__asm volatile (
"mov 28(%edx), %esi \n" // load saved %esi
"mov 24(%edx), %edi \n" // load saved %edi
"mov 20(%edx), %ebx \n" // load saved %ebx
"mov 16(%edx), %esp \n" // load saved %esp
"mov 12(%edx), %ebp \n" // load saved %ebp
"mov 8(%edx), %eax \n" // load saved %eip
"mov %eax, (%esp) \n" // store saved %eip to stack
"xor %eax, %eax \n" // clear return register
"inc %al \n" // increase to make 1, non-local return
"ret \n" // return
);
for (;;); // needed to silence compiler warning
}
Which just tries to perform operations on a completely random register (edx
in this case). The outcome is the expected: saving the pure random luck of
the compiler putting the right value in the random register above, there's
a crash.
2. Non-critical assessment.
The original commit message says "There is a small overhead introduced
(typically 1 machine instruction)". That machine instruction is a call
if a compiler doesn't perform tail optimization (happens regularly), and
it's 1 instruction only with the broken code shown above, fixing it
requires adding more. With inefficiencies already presented in the NLR
code, the overhead becomes "considerable" (several times more than 1%),
not "small".
The commit message also says "This eliminates duplicated code.". An
obvious way to eliminate duplication would be to factor out common code
to macros, not introduce overhead and breakage like above.
3. Faulty motivation.
All this started with a report of warnings/errors happening for a niche
compiler. It could have been solved in one the direct ways: a) fixing it
just for affected compiler(s); b) rewriting it in proper assembly (like
it was before BTW); c) by not doing anything at all, MICROPY_NLR_SETJMP
exists exactly to address minor-impact cases like thar (where a) or b) are
not applicable). Instead, a backwards "solution" was put forward, leading
to all the issues above.
The best action thus appears to be revert and rework, not trying to work
around what went haywire in the first place.
Each NLR implementation (Thumb, x86, x64, xtensa, setjmp) duplicates a lot
of the NLR code, specifically that dealing with pushing and popping the NLR
pointer to maintain the linked-list of NLR buffers. This patch factors all
of that code out of the specific implementations into generic functions in
nlr.c. This eliminates duplicated code.
The factoring also allows to make the machine-specific NLR code pure
assembler code, thus allowing nlrthumb.c to use naked function attributes
in the correct way (naked functions can only have basic inline assembler
code in them).
There is a small overhead introduced (typically 1 machine instruction)
because now the generic nlr_jump() must call nlr_jump_tail() rather than
them being one combined function.
This patch introduces the MICROPY_ENABLE_PYSTACK option (disabled by
default) which enables a "Python stack" that allows to allocate and free
memory in a scoped, or Last-In-First-Out (LIFO) way, similar to alloca().
A new memory allocation API is introduced along with this Py-stack. It
includes both "local" and "nonlocal" LIFO allocation. Local allocation is
intended to be equivalent to using alloca(), whereby the same function must
free the memory. Nonlocal allocation is where another function may free
the memory, so long as it's still LIFO.
Follow-up patches will convert all uses of alloca() and VLA to the new
scoped allocation API. The old behaviour (using alloca()) will still be
available, but when MICROPY_ENABLE_PYSTACK is enabled then alloca() is no
longer required or used.
The benefits of enabling this option are (or will be once subsequent
patches are made to convert alloca()/VLA):
- Toolchains without alloca() can use this feature to obtain correct and
efficient scoped memory allocation (compared to using the heap instead
of alloca(), which is slower).
- Even if alloca() is available, enabling the Py-stack gives slightly more
efficient use of stack space when calling nested Python functions, due to
the way that compilers implement alloca().
- Enabling the Py-stack with the stackless mode allows for even more
efficient stack usage, as well as retaining high performance (because the
heap is no longer used to build and destroy stackless code states).
- With Py-stack and stackless enabled, Python-calling-Python is no longer
recursive in the C mp_execute_bytecode function.
The micropython.pystack_use() function is included to measure usage of the
Python stack.
Reworked frozen module support: clean up makefiles and handle multiple directories.
Modules to freeze are included as git submodules.
Add neopixel to circuitplayground express build.
Fixes#56
This follows the pattern of how all other headers are now included, and
makes it explicit where the header file comes from. This patch also
removes -I options from Makefile's that specify the mp-readline/timeutils/
netutils directories, which are no longer needed.
A signal is like a pin, but ca also be inverted (active low). As such, it
abstracts properties of various physical devices, like LEDs, buttons,
relays, buzzers, etc. To instantiate a Signal:
pin = machine.Pin(...)
signal = machine.Signal(pin, inverted=True)
signal has the same .value() and __call__() methods as a pin.
This provides mp_vfs_XXX functions (eg mount, open, listdir) which are
agnostic to the underlying filesystem type, and just require an object with
the relevant filesystem-like methods (eg .mount, .open, .listidr) which can
then be mounted.
These mp_vfs_XXX functions would typically be used by a port to implement
the "uos" module, and mp_vfs_open would be the builtin open function.
This feature is controlled by MICROPY_VFS, disabled by default.
import utimeq, utime
# Max queue size, the queue allocated statically on creation
q = utimeq.utimeq(10)
q.push(utime.ticks_ms(), data1, data2)
res = [0, 0, 0]
# Items in res are filled up with results
q.pop(res)
This patch adds the MICROPY_EMIT_INLINE_XTENSA option, which, when
enabled, allows the @micropython.asm_xtensa decorator to be used.
The following opcodes are currently supported (ax is a register, a0-a15):
ret_n()
callx0(ax)
j(label)
jx(ax)
beqz(ax, label)
bnez(ax, label)
mov(ax, ay)
movi(ax, imm) # imm can be full 32-bit, uses l32r if needed
and_(ax, ay, az)
or_(ax, ay, az)
xor(ax, ay, az)
add(ax, ay, az)
sub(ax, ay, az)
mull(ax, ay, az)
l8ui(ax, ay, imm)
l16ui(ax, ay, imm)
l32i(ax, ay, imm)
s8i(ax, ay, imm)
s16i(ax, ay, imm)
s32i(ax, ay, imm)
l16si(ax, ay, imm)
addi(ax, ay, imm)
ball(ax, ay, label)
bany(ax, ay, label)
bbc(ax, ay, label)
bbs(ax, ay, label)
beq(ax, ay, label)
bge(ax, ay, label)
bgeu(ax, ay, label)
blt(ax, ay, label)
bnall(ax, ay, label)
bne(ax, ay, label)
bnone(ax, ay, label)
Upon entry to the assembly function the registers a0, a12, a13, a14 are
pushed to the stack and the stack pointer (a1) decreased by 16. Upon
exit, these registers and the stack pointer are restored, and ret.n is
executed to return to the caller (caller address is in a0).
Note that the ABI for the Xtensa emitters is non-windowing.
If a port defines MICROPY_READER_POSIX or MICROPY_READER_FATFS then
lexer.c now provides an implementation of mp_lexer_new_from_file using
the mp_reader_new_file function.
Implementations of persistent-code reader are provided for POSIX systems
and systems using FatFS. Macros to use these are MICROPY_READER_POSIX and
MICROPY_READER_FATFS respectively. If an alternative implementation is
needed then a port can define the function mp_reader_new_file.
Now, to use frozen bytecode all a port needs to do is define
FROZEN_MPY_DIR to the directory containing the .py files to freeze, and
define MICROPY_MODULE_FROZEN_MPY and MICROPY_QSTR_EXTRA_POOL.
As long as a port implement mp_hal_sleep_ms(), mp_hal_ticks_ms(), etc.
functions, it can just use standard implementations of utime.sleel_ms(),
utime.ticks_ms(), etc. Python-level functions.
This new config option allows to control whether MicroPython uses its own
internal printf or not (if not, an external one should be linked in).
Accompanying this new option is the inclusion of lib/utils/printf.c in the
core list of source files, so that ports no longer need to include it
themselves.
The idea is that all ports can use these helper methods and only need to
provide initialisation of the SPI bus, as well as a single transfer
function. The coding pattern follows the stream protocol and helper
methods.
Helpful when porting existing C libraries to MicroPython. abort()ing in
embedded environment isn't a good idea, so when compiling such library,
-Dabort=abort_ option can be given to redirect standard abort() to this
"safe" version.
Allows to translate C-level pin API to Python-level pin API. In other
words, allows to implement a pin class and Python which will be usable
for efficient C-coded algorithms, like bitbanging SPI/I2C, time_pulse,
etc.
Using usual method of virtual method tables. Single virtual method,
ioctl, is defined currently for all operations. This universal and
extensible vtable-based method is also defined as a default MPHAL
GPIO implementation, but a specific port may override it with its
own implementation (e.g. close-ended, but very efficient, e.g. avoiding
virtual method dispatch).