By setting MICROPY_EPOCH_IS_1970 a port can opt to use 1970/1/1 as the
Epoch for timestamps returned by stat(). And this setting is enabled on
the unix and windows ports because that's what they use.
Signed-off-by: Damien George <damien@micropython.org>
On 32-bit builds these stat fields will overflow a small-int, so use
mp_obj_new_int_from_uint to construct the int object.
Signed-off-by: Damien George <damien@micropython.org>
On ports like unix where the Epoch is 1970/1/1 and atime/mtime/ctime are in
seconds since the Epoch, this value will overflow a small-int on 32-bit
systems. So far this is only an issue on 32-bit unix builds that use the
VFS layer (eg dev and coverage unix variants) but the fix (using
mp_obj_new_int_from_uint instead of MP_OBJ_NEW_SMALL_INT) is there for all
ports so as to not complicate the code, and because they will need the
range one day.
Also apply a similar fix to other fields in VfsPosix.stat because they may
also be large.
Signed-off-by: Damien George <damien@micropython.org>
gettimeofday returns seconds since 2000/1/1 so needs to be adjusted to
seconds since 1970/1/1 to give the correct return value of mp_hal_time_ns.
Signed-off-by: Damien George <damien@micropython.org>
This commit fixes the cases when a TCP socket is in STATE_NEW,
STATE_LISTENING or STATE_CONNECTING and recv() is called on it. It now
raises ENOTCONN instead of a random error code due to it previously
indexing beyond the start of error_lookup_table[].
Signed-off-by: Damien George <damien@micropython.org>
Updating to Black v20.8b1 there are two changes that affect the code in
this repository:
- If there is a trailing comma in a list (eg [], () or function call) then
that list is now written out with one line per element. So remove such
trailing commas where the list should stay on one line.
- Spaces at the start of """ doc strings are removed.
Signed-off-by: Damien George <damien@micropython.org>
So they can be skipped if __rOP__'s are not supported on the target. Also
fix the typo in the complex_special_methods.py filename.
Signed-off-by: Damien George <damien@micropython.org>
The memory operation functions read_mem() and write_mem() create a
temporary buffer on the local C stack for the address bytes with the size
of 4 bytes. This buffer is filled in a loop from the user supplied address
and address length. If the user supplied 'addrsize' is bigger than 32, the
local buffer is overrun.
Fix this by raising an exception for invalid 'addrsize' values.
Signed-off-by: Michael Buesch <m@bues.ch>
A configurable result directory is advantageous because it enables
using a dedicated location, eventually outside of the source tree,
instead of forcing the output files into a fixed directory which might
also contain other files already. For that reason the default output
directory also has been changed to tests/results/.
Replace some usages of paths relative to the current working directory
with absolute paths relative to the tests directory.
Fixes and resulting changes:
- default values of MICROPYTHON and MPYCROSS are absolute paths and
always correct
- likewise, the correct full paths for tools and extmod directories
are appended to sys.path
- printing/cleaning failures works properly since it expects the .exp
and .out files in the tests directory which is also where they
are written to now, plus no more need for changing directories
This fixes#5872 and allows running custom tests which use run-tests
without having to cd to the tests directory first, and the test output
still is in the tests/ directory instead of the current working directory.
Discovery of tests and all skip test logic based on paths relative to
the current working directory remains unchanged which essentially means
that for running most of MicroPython's own tests, run-tests must still
be ran from within it's directory, so document that.
With sleep(0.2) a multiple of sleep(0.1), the order of task 2 and 3
execution is not well defined, and depends on the precision of the system
clock and how fast the rest of the code runs. So change 0.2 to 0.18 to
make the test more reliable.
Also fix a typo of t3/t4, and cancel t4 at the end.
Signed-off-by: Damien George <damien@micropython.org>
This adds an additional optional parameter to gap_scan() to select active
scanning, where scan responses are returned as well as normal scan results.
This parameter is False by default which retains the existing behaviour.
The READ_REQUEST callback is handled as a hard interrupt (because the BLE
stack needs an immediate response from it so it can continue) and so calls
to Python require extra protection:
- the caller-owned tuple passed into the callback must be separate from the
tuple used by other callback events (which are soft interrupts);
- the GC and scheduler must be locked during callback execution.
This commit adds support for modification time of files on littlefs v2
filesystems, using file attributes. For some background see issue #6114.
Features/properties of this implementation:
- Only supported on littlefs2 (not littlefs1).
- Uses littlefs2's general file attributes to store the timestamp.
- The timestamp is 64-bits and stores nanoseconds since 1970/1/1 (if the
range to the year 2554 is not enough then additional bits can be added to
this timestamp by adding another file attribute).
- mtime is enabled by default but can be disabled in the constructor, eg:
uos.mount(uos.VfsLfs2(bdev, mtime=False), '/flash')
- It's fully backwards compatible, existing littlefs2 filesystems will work
without reformatting and timestamps will be added transparently to
existing files (once they are opened for writing).
- Files without timestamps will open correctly, and stat will just return 0
for their timestamp.
- mtime can be disabled or enabled each mount time and timestamps will only
be updated if mtime is enabled (otherwise they will be untouched).
Signed-off-by: Damien George <damien@micropython.org>
Otherwise a task that continuously awaits on a large negative sleep can
monopolise the scheduler (because its wake time is always less than
everything else in the pairing heap).
Signed-off-by: Damien George <damien@micropython.org>
As per CPython behaviour, compile(stmt, "file", "single") should create
code which prints to stdout (via __repl_print__) the results of any
expressions in stmt.
Signed-off-by: Damien George <damien@micropython.org>
The existing implementation of mkdir() in this file is not sophisticated
enough to work correctly on all operating systems (eg Mac can raise
EISDIR). Using the standard os.makedirs() function handles all cases
correctly.
Signed-off-by: Damien George <damien@micropython.org>
Prior to this commit, pyboard.py used eval() to "parse" file data received
from the board. Using eval() on received data from a device is dangerous,
because a malicious device may inject arbitrary code execution on the PC
that is doing the operation.
Consider the following scenario:
Eve may write a malicious script to Bob's board in his absence. On return
Bob notices that something is wrong with the board, because it doesn't work
as expected anymore. He wants to read out boot.py (or any other file) to
see what is wrong. What he gets is a remote code execution on his PC.
Proof of concept:
Eve:
$ cat boot.py
_print = print
print = lambda *x, **y: _print("os.system('ls /; echo Pwned!')", end="\r\n\x04")
$ ./pyboard.py -f cp boot.py :
cp boot.py :boot.py
Bob:
$ ./pyboard.py -f cp :boot.py /tmp/foo
cp :boot.py /tmp/foo
bin chroot dev home lib32 media opt root sbin sys usr
boot config etc lib lib64 mnt proc run srv tmp var
Pwned!
There's also the possibility that the device is malfunctioning and sends
random and possibly dangerous data back to the PC, to be eval'd.
Fix this problem by using ast.literal_eval() to parse the received bytes,
instead of eval().
Signed-off-by: Michael Buesch <m@bues.ch>
Prior to this commit, if you configure a pin as an output type (I2C in this
example) and then later configure it back as an input, then it will report
the type incorrectly. Example:
>>> import machine
>>> b6 = machine.Pin('B6')
>>> b6
Pin(Pin.cpu.B6, mode=Pin.IN)
>>> machine.I2C(1)
I2C(1, scl=B6, sda=B7, freq=420000)
>>> b6
Pin(Pin.cpu.B6, mode=Pin.ALT_OPEN_DRAIN, pull=Pin.PULL_UP, af=Pin.AF4_I2C1)
>>> b6.init(machine.Pin.IN)
>>> b6
Pin(Pin.cpu.B6, mode=Pin.ALT_OPEN_DRAIN, af=Pin.AF4_I2C1)
With this commit the last print now works:
>>> b6
Pin(Pin.cpu.B6, mode=Pin.IN)
Latest versions of Sphinx (at least 3.1.0) do not need the `*` escaped and
will render the `\` in the output if it is there, so remove it.
Fixes issue #6209.
Adds a job to build the zephyr port in CI using the same docker container
that the zephyr project uses for its own CI.
Always make clean zephyr builds to ensure we don't just rebuild C code, but
we also rebuild Kconfig and dts. This is required when switching between
boards, which have different Kconfigs and device trees.
Uses the tagged zephyr 2.3.0 release.
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
Include storage/flash_map.h unconditionally so we always have access to the
FLASH_AREA_LABEL_EXISTS macro, even if CONFIG_FLASH_MAP is not defined.
This fixes a build error for the qemu_x86 board:
main.c:108:63: error: missing binary operator before token "("
108 | #elif defined(CONFIG_FLASH_MAP) && FLASH_AREA_LABEL_EXISTS(storage)
| ^
../../py/mkrules.mk:88: recipe for target 'build/genhdr/qstr.i.last' failed
Signed-off-by: Maureen Helm <maureen.helm@nxp.com>
mp_reader_new_file() is used to read in files for importing, either .py or
.mpy files, for the lexer and persistent code loader respectively. In both
cases the file should be opened in raw bytes mode: the lexer handles
unicode characters itself, and .mpy files contain 8-bit bytes by nature.
Before this commit importing was working correctly because, although the
file was opened in text mode, all native filesystem implementations (POSIX,
FAT, LFS) would access the file in raw bytes mode via mp_stream_rw()
calling mp_stream_p_t.read(). So it was only an issue for non-native
filesystems, such as those implemented in Python. For Python-based
filesystem implementations, a call to mp_stream_rw() would go via IOBase
and then to readinto() at the Python level, and readinto() is only defined
on files opened in raw bytes mode.
Signed-off-by: Damien George <damien@micropython.org>
If mpy-cross exits with an error be sure to print that error in a way that
is readable, instead of a long bytes object.
Signed-off-by: Damien George <damien@micropython.org>
On ports where normal heap memory can contain executable code (eg ARM-based
ports such as stm32), native code loaded from an .mpy file may be reclaimed
by the GC because there's no reference to the very start of the native
machine code block that is reachable from root pointers (only pointers to
internal parts of the machine code block are reachable, but that doesn't
help the GC find the memory).
This commit fixes this issue by maintaining an explicit list of root
pointers pointing to native code that is loaded from an .mpy file. This
is not needed for all ports so is selectable by the new configuration
option MICROPY_PERSISTENT_CODE_TRACK_RELOC_CODE. It's enabled by default
if a port does not specify any special functions to allocate or commit
executable memory.
A test is included to test that native code loaded from an .mpy file does
not get reclaimed by the GC.
Fixes#6045.
Signed-off-by: Damien George <damien@micropython.org>
All imports are now tested to see if the test should be skipped,
UserFile.read is removed, and UserFile.readinto is made more efficient.
Signed-off-by: Damien George <damien@micropython.org>
These tests are specific to MicroPython so have a better home in the
micropython/ test subdir, and putting them here allows them to be run by
all targets, not just those that have access to the local filesystem (eg
the unix port).
Signed-off-by: Damien George <damien@micropython.org>
It raises on EOFError instead of an IncompleteReadError (which is what
CPython does). But the latter is derived from EOFError so code compatible
with MicroPython and CPython can be written by catching EOFError (eg see
included test).
Fixes issue #6156.
Signed-off-by: Damien George <damien@micropython.org>
The SCSI driver calls GetCapacity to get the block size and number of
blocks of the underlying block-device/LUN. It caches these values and uses
them later on to verify that reads/writes are within the bounds of the LUN.
But, prior to this commit, there was only one set of cached values for all
LUNs, so the bounds checking for a LUN could use incorrect values, values
from one of the other LUNs that most recently updated the cached values.
This would lead to failed SCSI requests.
This commit fixes this issue by having separate cached values for each LUN.
Signed-off-by: Damien George <damien@micropython.org>
MicroPython's original implementation of __aiter__ was correct for an
earlier (provisional) version of PEP492 (CPython 3.5), where __aiter__ was
an async-def function. But that changed in the final version of PEP492 (in
CPython 3.5.2) where the function was changed to a normal one. See
https://www.python.org/dev/peps/pep-0492/#why-aiter-does-not-return-an-awaitable
See also the note at the end of this subsection in the docs:
https://docs.python.org/3.5/reference/datamodel.html#asynchronous-iterators
And for completeness the BPO: https://bugs.python.org/issue27243
To be consistent with the Python spec as it stands today (and now that
PEP492 is final) this commit changes MicroPython's behaviour to match
CPython: __aiter__ should return an async-iterable object, but is not
itself awaitable.
The relevant tests are updated to match.
See #6267.
Enabling the following features for all targets, except for nrf51
targets compiled to be used with SoftDevice:
- MICROPY_PY_ARRAY_SLICE_ASSIGN
- MICROPY_PY_SYS_STDFILES
- MICROPY_PY_UBINASCII
Splitting mpconfigport.h into multiple device specific
files in order to facilitate variations between devices.
Due to the fact that the devices might have variations in
features and also variations in flash size it makes sense
that some devices offers more functionality than others
without being limited by restricted devices.
For example more micropython features can be activated for
nrf52840 with 1MB flash, compared to nrf51 with 256KB.
Fixing 98e583430f, the semantics of strncpy
require that the remainder of dst be filled with null bytes.
Signed-off-by: Damien George <damien@micropython.org>
This code is imported from musl, to match existing code in libm_dbl.
The file is also added to the build in stm32/Makefile. It's not needed by
the core code but, similar to c5cc64175b,
allows round() to be used by user C modules or board extensions.