The function is modeled after traceback.print_exception(), but unbloated,
and put into existing module to save overhead on adding another module.
Compliant traceback.print_exception() is intended to be implemented in
micropython-lib in terms of sys.print_exception().
This change required refactoring mp_obj_print_exception() to take pfenv_t
interface arguments.
Addresses #751.
Remove include of stm32f4xx_hal.h, replace by include of MICROPY_HAL_H
where needed, and make it compile without float support. This makes
these 3 modules much more generic and usable by other ports.
mp_obj_int_get_truncated is used as a "fast path" int accessor that
doesn't check for overflow and returns the int truncated to the machine
word size, ie mp_int_t.
Use mp_obj_int_get_truncated to fix struct.pack when packing maximum word
sized values.
Addresses issues #779 and #998.
mp_lexer_t type is exposed, mp_token_t type is removed, and simple lexer
functions (like checking current token kind) are now inlined.
This saves 784 bytes ROM on 32-bit unix, 348 bytes on stmhal, and 460
bytes on bare-arm. It also saves a tiny bit of RAM since mp_lexer_t
is a bit smaller. Also will run a bit more efficiently.
This patch overhauls the network driver interface. A generic NIC must
provide a set of C-level functions to implement low-level socket control
(eg socket, bind, connect, send, recv). Doing this, the network and
usocket modules can then use such a NIC to implement proper socket
control at the Python level.
This patch also updates the CC3K and WIZNET5K drivers to conform to the
new interface, and fixes some bugs in the drivers. They now work
reasonably well.
pyb.delay and pyb.udelay now use systick if IRQs are enabled, otherwise
they use a busy loop. Thus they work correctly when IRQs are disabled.
The busy loop is computed from the current CPU frequency, so works no
matter the CPU frequency.
The reason for having this delay is to reduce power consumption at the
REPL (HAL_Delay calls __WFI to idle the CPU). But stdin_rx_chr has a
__WFI in it anyway, so this delay call is not needed.
By removing this call, the readline input can consume characters much
more quickly (before was limited to 1000 chrs/s), and has much reduced
dependency on the specific port.
Also restrict higher frequencies to have a VCO_OUT frequency below
432MHz, as specified in the datasheet.
Docs improved to list allowed frequencies, and explain about USB
stability.
This is experimental support. API is subject to changes. RTS/CTS
available on UART(2) and UART(3) only. Use as:
uart = pyb.UART(2, 9600, flow=pyb.UART.RTS | pyb.UART.CTS)
This patch also enables non-blocking streams on stmhal port.
One can now make a USB-UART pass-through function:
def pass_through(usb, uart):
while True:
select.select([usb, uart], [], [])
if usb.any():
uart.write(usb.read(256))
if uart.any():
usb.write(uart.read(256))
pass_through(pyb.USB_VCP(), pyb.UART(1, 9600))
Improvements are:
2 ctrl-C's are now needed to truly kill running script on pyboard, so
make CDC interface allow multiple ctrl-C's through at once (ie sending
b'\x03\x03' to pyboard now counts as 2 ctrl-C's).
ctrl-C in friendly-repl can now stop multi-line input.
In raw-repl mode, use ctrl-D to indicate end of running script, and also
end of any error message. Thus, output of raw-repl is always at least 2
ctrl-D's and it's much easier to parse.
pyboard.py is now a bit faster, handles exceptions from pyboard better
(prints them and exits with exit code 1), prints out the pyboard output
while the script is running (instead of waiting till the end), and
allows to follow the output of a previous script when run with no
arguments.
This allows to implement KeyboardInterrupt on unix, and a much safer
ctrl-C in stmhal port. First ctrl-C is a soft one, with hope that VM
will notice it; second ctrl-C is a hard one that kills anything (for
both unix and stmhal).
One needs to check for a pending exception in the VM only for jump
opcodes. Others can't produce an infinite loop (infinite recursion is
caught by stack check).
TIM2_CH1_ETR is really bundling 2 functions to the same pin:
TIM2_CH1 (where its used as a channel)
TIM2_ETR (where iss used as an external trigger).
I fixed most of these a while back, but it looks like I missed this one.